ВСПОМОГАТЕЛЬНЫЕ КОСМИЧЕСКИЕ РДТТ

В настоящее время эти двигатели широко используются в системах аварийного спасения (САС) и мягкой посадки космических кораблей, для управления полетом КА, в системах разделения ступеней и сброса головных обтекателей РН, для раскрутки студеней РН и т. д. Их широкое применение прежде всего вызвано простотой конструкции, быстротой срабатывания и высокой надежностью, что особенно важно при спасении экипажей пилотируемых космических кораблей в аварийных ситуациях

Например, РДТТ с вспомогательными функциям нашли применение в первой полностью твердотопливной РН «Скаут» (с 1960 г.). В РН «Скаут» четвертая ступень стабилизировалась вращением (для раскрутки этой ступени применялись 4 РДТТ тягой по 0,18 кН). В дальнейшем сфера использования вспомогательных РДТТ в космонавтике расширилась: от РДТТ с тягой в несколько ньютонов (например, для раскрутки и ориентации спутников) до сотен килоньютонов (для систем аварийного спасения космических кораблей). В этом разделе мы рассмотрим наиболее характерные примеры установки вспомогательных РДТТ на ракетах-носителях и космических аппаратах.

РДТТ систем аварийного спасения и мягкой посадки советских космических кораблей. «Восток». Поскольку основная опасность грозила космонавту на старте и при посадке, были приняты меры по оснащению корабля специальными системами безопасности. Особенности спасения на старте при взрыве и пожаре на РН, которые носят быстротечный характер, потребовали создания автоматики включения средств спасения. Эта. автоматика в определенной последовательности вводила в действие пиротехнические средства отстрела крышки-люка корабля и включала два РДТТ, укрепленных на катапультируемом кресле с космонавтом. РДТТ обеспечивали удаление космонавта из очага пожара на расстояние в несколько сотен метров. После этого вводилась в действие парашютная система посадки.

В отличие от американского космического корабля «Джемини», где катапультируемые кресла с РДТТ использовались только как средства спасения космонавтов в аварийных случаях, на корабле «Восток» катапультирование можно было использовать и при посадке. В этом случае на высоте около 7 км сбрасывалась крышка-люк спускаемого аппарата (по сигналам от бародатчиков) и производилось катапультирование космонавта. После этого вводился в действие тормозной парашют, а затем открывался основной. Спускаемый аппарат имел и независимую парашютную систему, которая включала вытяжной и основной парашюты.

Из шести запусков кораблей «Восток» все прошли успешно, и посадка осуществлялась в заданном районе, что подтвердило высокую надежность РН и космического корабля, а также большую эффективность мероприятий, направленных на обеспечение безопасности полетов.

«Восход». Этот ТИП корабля значительно отличался от своего прототипа — корабля «Восток». Убедившись в высокой надежности последнего, конструкторы отказались и от громоздкого и тяжелого катапультируемого кресла. Изменилась также и система посадки. Она теперь включала следующие операции: на высоте около 5 км отстреливалась крышка парашютного контейнера и вводилась в действие парашютная система, когда скорость снижения спускаемого аппарата уже уменьшилась за счет торможения в атмосфере до 220 м/с. Примерно через 6 мин корабль достигал поверхности Земли, и перед касанием с грунтом включалась тормозная двигательная установка с РДТТ, которая снижала скорость приземления практически до нуля.

Использование РДТТ мягкой посадки началось с 1964 г. при полете корабля «Восход-1».

«Союз». Для быстрого покидания зоны пожара или взрыва, когда экипаж находится в спускаемом аппарате в режиме проверок бортовых систем, на корабле «Союз» предусмотрена специальная аварийная система покидания старта. Эта система аварийного спасения (САС) корабля «Союз» стала применяться с 1967 г., с появлением более усовершенствованного варианта трехступенчатой РН «Восток». САС может вводиться на конечном этапе предстартовой подготовки, когда обслуживающий персонал уже покинул стартовую позицию, а фермы обслуживания РН и космического корабля разведены. С помощью этой системы корабль уводится из аварийной зоны на высоту, достаточную для отделения спускаемого аппарата и введения в действие парашютной системы посадки.

Двигательная установка САС корабля «Союз» представляет собой установку из РДТТ трех типов (см. рис. на первой странице обложки). В верхней части системы расположен многосопловой РДТТ отделения САС и обтекателя, защищающего корабль от аэродинамического нагрева во время прохождения ракетой плотных слоев атмосферы. Непосредственно к обтекателю крепится основной РДТТ (тяга 750 кН, масса топливного заряда 1 т) с 12 соплами, развернутыми под углом 30° к продольной оси РН. Под обтекателем этого двигателя находятся четыре РДТТ управления, которые обеспечивают разворот и увод спускаемого аппарата и орбитального отсека корабля в сторону от опасной зоны,

В результате срабатывания САС корабль может подниматься на высоту до 1200 м и отбрасываться от места старта на расстояние до 3 км (в зависимости от направления ветра).

РДТТ нашли применение в системах приземления космического корабля «Союз» (наряду с парашютной системой). Посадка спускаемого аппарата происходит так. Непосредственно у Земли, за 10 мин до посадки, отделяется уже ненужный передний теплозащитный экран, закрывающий двигатели мягкой посадки, расположенные в лобовой части спускаемого аппарата. При этом экипаж начинает готовиться к приземлению и взводится система амортизации кресел, в которых группируются космонавты. У самой Земли, на высоте около 1 м, включается шесть РДТТ мягкой посадки (тяга несколько килоньютонов, масса заряда РДТТ 9 кг, время работы доли секунды). Эти двигатели окончательно гасят скорость, с которой спускаемый аппарат снижается на парашюте (примерно 7–8 м/с), практически до 0 м/с.

РДТТ систем аварийного спасения американских космических кораблей. «Меркурий». На первом американском космическом корабле в случае аварии на старте и на начальном участке выведения использовалась система аварийного спасения с РДТТ, который обеспечивал увод корабля на высоту до 760 м. Затем с помощью парашютной системы корабль мог осуществлять посадку на воду. Твердотопливный двигатель САС корабля «Меркурий» (рис. 5) мог создать максимальную перегрузку до 30 g и развивать тягу 230 кН в течение ~ 1 с. РДТТ устанавливался так, чтобы равнодействующая тяги, развиваемой его тремя соплами, была смещена относительно центра масс корабля для обеспечения отделения корабля в поперечном направлении относительно траектории полета РН.

После отделения корабля от РН на безопасное расстояние предусматривался сброс фермы с РДТТ увода, уже выполнившим свою задачу. Для этого предназначался другой РДТТ (тоже с тремя соплами), который мог развивать тягу 3,6 кН в течение 1,5 с. При нормальном ходе полета САС сбрасывалась на определенной высоте, а РН с кораблем продолжали полет.

В практике пилотируемых полетов космического корабля «Меркурий» САС не использовалась. Однако было осуществлено срабатывание этой системы во время первого запуска экспериментального (непилотируемого) космического корабля «Меркурий» (25 апреля 1961 г.), выведенного на орбиту со специальной установкой («роботом») на борту, имитирующей дыхание, температуру, и речь человека. РН была подорвана по команде с Земли через 30 с после старта, но перед подрывом САС отделила корабль, который опустился на парашюте на воду и был подобран вертолетом через 25 мин после запуска. Этот случай на практике доказал целесообразность использования РДТТ в системах аварийного спасения космических кораблей.


Рис. 5. Система аварийного спасения космического корабля «Меркурий»:

1 — РДТТ увода корабля; 2 — РДТТ сброса САС; 3 — ферма; 4 — космический корабль; 5 — РДТТ отделения корабля от РН на орбите; 6 — РДТТ торможения корабля при сходе с орбиты


Рис. 6. Система аварийного спасения космического корабля «Аполлон»:

1 — РДТТ для управления траекторией полета (отвода корабля в сторону); 2 — РДТТ сброса САС; 3 — РДТТ увода корабля; 4 — отсек с экипажем


«Джемини». Аварийное спасение космонавтов при помощи катапультируемых кресел ограничено скоростью и высотой полета в момент катапультирования. В некоторых космических кораблях вместо САС использовались катапультируемые кресла с применением РДТТ. Например, в космическом корабле «Джемини» сигнал на катапультирование обоих космонавтов мог подать любой из них, для чего он должен был вытянуть кольцо из контейнера, установленного между ногами. За креслами космонавтов находились рельсы, которые служили направляющими при катапультировании. Катапультирование осуществлялось с помощью пиропатронов. Причем система блокировки предотвращала срабатывание патронов до того, как с помощью взрывных болтов открывались посадочные люки (их два), через которые выбрасываются кресла с космонавтами.

После срабатывания пиропатронов, когда кресла с космонавтами оказывались вне корабля, включались вмонтированные в кресла РДТТ (продолжительность работы 0,27 с, полный импульс 8,4 кН с), которые отбрасывали кресла вперед под углом 49° к продольной оси корабля. Максимальное ускорение при катапультировании 24 g. Согласно расчетам в случае аварии при старте эти РДТТ должны были обеспечить отбрасывание кресел с космонавтами в сторону от ракеты на 150 м. При проведенных экспериментах кресла отбрасывались на 300 м в сторону и на 140 м вверх.

После отбрасывания кресло отделяется, развертывается надувной баллон, обеспечивающий стабилизацию и торможение кресла, а затем раскрываются парашюты. Посадка экипажа осуществлялась на воду.

«Аполлон». Его САС предназначалась для отбрасывания отсека с экипажем вверх (вперед) и в сторону от РН в случае возникновения аварийной ситуации при старте и на начальном участке полета корабля «Аполлон» (до высоты ~ 80 км). В состав САС входила рама с укрепленными на ней тремя РДТТ (рис. 6). Общая масса этой конструкции 4 т, длина 7 м.

Рама, имеющая форму усеченной четырехгранной пирамиды высотой около 3 м, сварена из труб (титановый сплав) и крепилась к отсеку экипажа подрывными болтами. РДТТ, предназначенный для отбрасывания отсека экипажа вверх (вперед), имел четыре сопла, установленных под углом 35° к продольной оси двигателя. Длина РДТТ 4,6 м, диаметр 0,66 м, масса 2,18 т (без топлива — 0,73 т). Тяга РДТТ 700 кН, продолжительность работы 6 с, создаваемое ускорение 9 g.

В случае возникновения аварийной ситуации одновременно должен был включаться другой РДТТ, предназначенный для отбрасывания отсека с экипажем в сторону. Этот РДТТ длиной 0,6 м, диаметром 0,23 м и массой 23 кг развивал тягу 15,1 кН и работал в течение 0,5 с. После прекращения работы этих двух РДТТ включался двухсопловой РДТТ для сброса САС. При длине 1,5 м и массе 0,25 т он развивал тягу 150 кН и работал менее 1 с.

После отбрасывания САС отсек экипажа спускался на парашютах. Для того чтобы парашюты, размещенные в верхней части отсека с экипажем, могли развернуться, отсек специальным образом ориентировался и спускался днищем вперед. Если аварийная ситуация возникла бы при старте или на начальном участке полета (до высоты 36 км), ориентацию отсека экипажа обеспечивали специальные аэродинамические поверхности, смонтированные на верхней части корпуса САС. До окончания работы РДТТ увода корабля эти поверхности прижаты к корпусу, а затем раскрываются.

САС могла отделяться от отсека с экипажем лишь после того, как будет обеспечена заданная ориентация отсека. Если аварийная ситуация возникла бы на высотах 36–80 км, где плотность атмосферы недостаточна для эффективной работы аэродинамических поверхностей, САС отделялась от отсека экипажа сразу после окончания работы РДТТ увода, а заданная ориентация отсека обеспечивалась с помощью смонтированных в нем ЖРД системы ориентации.

При отсутствии аварийной ситуации при старте и на начальном участке полета по достижении высоты около 80 км рама с двигателями отделяется от отсека с экипажем, для чего должны были включаться РДТТ для сброса САС и отвода корабля в сторону.

РДТТ межпланетных КА. В качестве вспомогательных РДТТ используются на многих ИСЗ, а также на ряде межпланетных КА. Примером могут служить КА «Марс-2» и «Марс-3» (запущены в 1971 г.). На этих КА расположено несколько РДТТ, выполняющих различные задачи (рис. 7). На аэродинамическом тормозном конусе находились две пары РДТТ (тяга каждого 0,5 кН). Одна пара включалась при подлете к Марсу для раскрутки аэродинамического конуса после его отделения вместе со спускаемым аппаратом от КА (время работы 0,3 с). Раскрутка осуществлялась после ориентирования аэродинамического конуса спускаемого аппарата в направлении Марса. Операция раскрутки вызвана необходимостью придания КА заданного ориентированного положения при входе в плотные слои атмосферы Марса.

Затем отстреливался (вместе с соответствующей рамой крепления) маршевый РДТТ перевода аппарата на траекторию спуска и включалась вторая пара РДТТ (время работы 0,26 с), чтобы остановить вращение аэродинамического конуса. Сопла РДТТ этой пары направлены в противоположную сторону по сравнению с соплами РДТТ первой пары.

После аэродинамического торможения аппарата включался РДТТ для сброса крышки парашютной системы и ввода вытяжного парашюта (тяга 6,5 кН). Время работы РДТТ 0,24 с. Одновременно отстреливался аэродинамический тормозной конус и вытяжной парашют вытаскивал основной. Последний вытягивал из парашютного контейнера РДТТ увода парашютной системы, (тяга 9 кН), чтобы парашюты не накрыли спускаемый аппарат, и РДТТ мягкой посадки (тяга 56 кН).


Рис. 7. Спускаемый аппарат межпланетной станции Марс-3»:

1 — аэродинамический тормозной конус; 2 — РДТТ ввода в действие вытяжного парашюта; 3 — РДТТ перевода аппарата на траекторию спуска; 4 — основной парашют; 5 — спускаемый аппарат


Затем срабатывал высотометр, установленный на спускаемом аппарате, и разделялись РДТТ увода и РДТТ мягкой посадки. Первый отбрасывал парашют в сторону (время его работы 1 с), а с помощью второго осуществлялась мягкая посадка спускаемого аппарата на поверхность Марса (время его работы 1,1 с). После окончания работы РДТТ мягкой посадки отстреливался нижний полутор парашютного контейнера и включались два боковых РДТТ (общая тяга 1 кН, время работы 4 е), установленных на корпусе РДТТ мягкой посадки. Их задача — отвести (отбросить) РДТТ мягкой посадки в сторону во избежание ударения его о корпус спускаемого аппарата.

Вспомогательные РДТТ применялись и на КА «Марс-5» и «Марс-6», «Рейнджер» (см. рис. 12 на стр. 51) и т. д.

Вспомогательные РДТТ ракет-носителей. РДТТ нашли применение в качестве газогенераторов на головных обтекателях РН, для управления их полета, для систем ориентации РН (например, в РН «Тор—Эйбл»), в системах разделения ступеней РН (например, в РН «Титан-3Си», «Сатурн», МТКК «Спейс Шаттл») и т. д.

«Сатурн-5». Эта РН с маршевыми ЖРД на всех трех последовательно расположенных ступенях содержит в Общей сложности 18 вспомогательных РДТТ, установленных на периферии корпуса. Причем в хвостовой части первой ступени расположены 8 тормозных РДТТ (развивавших тягу по 337 кН каждый за время работы 0,54 с) для отделения данной ступени. В переходном отсеке под второй ступенью расположены 4 РДТТ (развивавших тягу по 102 кН каждый и работавших в течение 3,8 с) для «осадки» топлива в баках. И наконец, внизу в третьей ступени расположены два РДТТ (развивавших тягу по 15 кН каждый при времени работы 3,9 с) для «осадки» топлива и еще четыре РДТТ (с тягой по 155 кН каждый при времени работы 1,5 с) для отделения второй ступени.

Последовательность функционирования перечисленных РДТТ заключалась в следующем. Через 0,5–0,7 с после команды на выключение маршевых ЖРД отработавшей ступени включаются РДТТ, обеспечивающие «осадку» топлива в баках последующей ступени. Спустя еще 0,1–0,2 с включаются тормозные РДТТ, отделяющие отработавшую ступень. В этот момент тяга ее маршевых двигателей еще составляет 10 % номинального значения. Тормозные РДТТ продолжают работать, а последующая ступень в течение 0,1–0,6 с совершает полет по инерции и под действием тяги РДТТ «осадки» топлива (например, через 1 с после момента разделения первой и второй ступеней расстояние между ними достигает 2 м). Затем подается команда на включение маршевых ЖРД. Через 3–6 с они выходят на номинальный рабочий режим, и действие РДТТ «осадки» топлива прекращается, а вскоре эти РДТТ сбрасываются, чтобы уменьшить «пассивную» массу ступени. Операции сброса осуществляются при помощи пиротехнических систем и пружинных толкателей.

Вспомогательные РДТТ ракеты-носителя «Сатурн-5» одинаковы по своей конструкции. В их стальных цилиндрических корпусах содержатся заряды с внутренними звездообразными каналами, изготовленные из смесевого топлива на основе перхлората аммония и полисульфидного каучука. Наиболее крупными являются тормозные РДТТ первой ступени; их высота 2,24 м, диаметр 0,39 м, масса 228 кг (в том числе 126 кг топлива). Наименьшие РДТТ, обеспечивающие «осадку» топлива в баках третьей ступени, содержат по 27 кг топлива.

«Титан-ЗСи», «Спейс Шаттл». На каждом из двух твердотопливных «навесных» их двигателей (о которых будет рассказано далее) имеется восемь РДТТ отделения, сгруппированных в два блока. РДТТ «Титан-ЗСи» показаны на последней странице обложки в момент их включения. Далее мы рассмотрим РДТТ аппарата «Спейс Шаттл», которые отличаются от двигателей РН «Титан-ЗСи» лучшими характеристиками. Они развивают тягу по 95 кН и работают 0,7 с (а с учетом процессов нарастания и спада тяги — 1,2 с). Суммарный импульс тяги каждого двигателя 82 кН с. Топливный заряд массой 35 кг с внутренним каналом в виде шестнадцатиконечной звезды (обеспечивающим большую поверхность горения) размещен в цилиндрическом корпусе диаметром 32,6 см. Общая длина двигателя 88 см при массе 74 кг.

При сгорании топлива в камере РДТТ образуются газы с высоким давлением (около 13 МПа), что позволяет достаточно эффективно использовать потенциальную химическую энергию топлива. Корпус РДТТ и деталь крепления сопла изготовлены из алюминиевого сплава, выходная часть сопла — стальная, неохлаждаемая, горловина сопла — графитовая.

При проектировании РДТТ отделения «Спейс Шаттл» обращалось особое внимание на то, чтобы реактивные струи газов, истекающих из РДТТ, не повредили теплозащитное покрытие этого аппарата во время полета. Поэтому необходимо было исключить возможность попадания в газовые струи каких-либо посторонних твердых частиц (частей воспламенителя и теплозащитных покрытий и т. д.). Даже состав топлива РДТТ был выбран таким, чтобы содержание этих частиц в продуктах сгорания было небольшим: в смесевом топливе всего 2 % алюминия (остальное — перхлорат аммония и полибутадиен с гидроксильными концевыми группами).








Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке