|
||||||||||||||||||||||||||||||||
|
Часть пятая Частицы, которые правят миром Яблоко падает близко от яблони Бытует такой анекдот. Некая кинозвезда, восхитившись талантом Бернарда Шоу, пишет ему письмо: «Предлагаю Вам свою руку и сердце. Представьте себе наших детей, унаследовавших мою красоту и Ваш ум». Ответ был краток. «Мадам, я вынужден отвергнуть Ваше предложение. Ведь может быть и так, что дети будут такими же красивыми, как я, и такими же умными, как Вы». Жалко, что никак не угадать, на мать будет похож ребенок, на отца или на более дальних родственников. Если бы можно было это знать наперед, возможно, иной раз стоило бы воздержаться от производства потомка на свет божий. Комбинация наследственных признаков родителей, проявляющихся в потомстве, – типично случайное явление. Поэтому удается провести прямую аналогию между наследованием ребенком красоты и разума своих родителей и игрой в карты или кости. Задолго до проникновения в тайны строения биологического вещества ученые и практики, исследовавшие передачу наследственных признаков у быстро размножающихся животных и растений, явно или неявно пользовались представлением о материальном носителе наследственности – гене. Еще совсем недавно никто толком не смог бы объяснить, что такое ген. Но если допустить его существование и добавить еще одну-две гипотезы, то картина передачи наследственных признаков станет ясной и, что самое главное, такая модель явления позволит делать предсказания. А поскольку вся картина носит случайный характер, то предсказания будут, разумеется, носить статистический характер. Итак, примем, что в любом организме содержится множество разных генов. Каждый из них отвечает за тот или иной признак. Например, один определяет голубизну глаз – ген голубоглазия, другой ген – длинного носа, третий – ген вздорного характера и т.д. … Каждый из них имеет своего парного антагониста. Для гена голубоглазия есть ген кареглазия, для гена длинного носа – ген короткого носа, для гена вздорного характера – ген покладистого характера. Чтобы объяснить ряд фактов, необходимо предположить, что гены выступают в организме только парами. Возможны особи, имеющие для некоего признака пару тождественных генов – скажем, у одной два гена, заведующих голубоглазием, у другой особи – два гена кареглазия, а есть особи, у которых ген присутствует со своим парным антагонистом: один ген голубоглазия, другой – кареглазия. Если у особи оба гена «голубые», то ее глаза будут, конечно, тоже голубые; если оба гена у нее «карие», то и глаза ее карие. А как обстоит дело, если один ген «карий», а другой «голубой»? На этот вопрос отвечает следующий закон. Из двух антагонистических генов один подавляет другого. Тот, который берет верх, называется доминантным, а уступающий – рецессивным. А какой из пары генов является доминантным и какой рецессивным и каков «состав» генов у животного или растения, покажет только опыт, практика. Как же, собственно говоря, происходит передача наследственных признаков? Дочерний организм отбирает каждую пару своих генов из двух пар – материнской и отцовской. Если речь идет о гене, который может выступать в форме Г или форме К, то возможны следующие варианты передачи наследственности:
Проанализируем последнюю графу, показывающую, какие пары генов получают дети от своих родителей. Первая строка – у всех детей один состав генов, так как родители имеют те же гены. Из второй строки видно, что половина наследников имеет генную формулу ГГ, а другая половина – формулу ГК. Наибольшее разнообразие признаков возникает у потомков в том случае, если и отец и мать их являются обладателями антагонистической пары генов (пятая строка). Тогда одна четверть потомства имеет пару одинаковых генов Г, другая четверть – пару одинаковых генов К, а половина потомства повторяет своих родителей, то есть обладает парой антагонистических генов (ГК). Вы, конечно, уже поняли, как получены формулы состава генов у детей. Ну конечно, надо «перемножить» символы; скажем, ГК ? ГК = ГГ + ГК + ГК + КК, откуда ясно, что ГГ и КК выступают с «весом» в 1/4, а ГК с «весом» в 1/2. Чтобы ответить на вопрос, в какой форме выступает признак, надо указать, какая из форм гена является доминантной. Если речь идет о цвете глаз, то доминантной является форма К (кареглазие). То есть карие глаза будут у всех потомков, кроме тех, которые получают пару генов ГГ. К такому утверждению люди пришли после многочисленных наблюдений и исследований передачи по наследству признаков цвета. Обратите внимание, что невозможно сделать заключение о составе генов по цвету глаз однозначно. Если глаза голубые, то состав генов наверняка ГГ, ибо Г – рецессивный признак (это выведено из опыта). Но если глаза карие, то состав генов может быть как КК, так и ГК. Если отец голубоглаз, то его генная формула ГГ. Если мать обладает парой КК, то глаза детей будут неизбежно карими. Если же у нее пара генов ГК (вторая строчка таблицы), то половина шансов за то, что цвет глаз у детей будет таким же, как у отца. Еще один вывод: супруг не должен терзаться сомнениями, если у него родилось голубоглазое дитя, несмотря на бесспорно карие глаза обоих родителей. Вы видите, что подобное событие может произойти с вероятностью одна четвертая. Так будет, если соответствующие гены подобраны в форме ГК (пятая строка) как у отца, так и у матери. Табличка, которую мы только что привели, позволяет судить о вероятности события, но отнюдь не является документом для жесткого предсказания. Из нее, скажем, следует, что кареглазый отец с формулой гена ГК и голубоглазая мать могут иметь как голубоглазого, так и кареглазого ребенка, и притом с равными шансами. Может ли быть в этом семействе пять голубоглазых детей? Конечно, может быть, и вероятность этого события такая же, как появление в рулетке пять раз одинакового цвета, то есть одна вторая в пятой степени (или одна тридцать вторая). Можно представить себе передачу по наследству цвета глаз и волос, формы носа и ушных раковин и т.д. следующим образом. Отец и мать протягивают будущему существу черный ящик. И в отцовском и в материнском ларце по два шара для гена каждого сорта. Будущий ребенок выбирает по одному шару из каждого ящика – один от отца, а другой от матери. Разумеется, вполне может случиться и так, что несколько детей сделают в этой несложной игре одинаковый выбор одного или нескольких генов. Как всегда, знание вероятности события мало полезно, когда идет речь о единичном событии. Да и в случае 5–6 событий можно, руководствуясь вероятностями, сильно ошибиться, делая предсказания. Но когда речь идет о многократно повторенном опыте, то, как мы знаем, вероятностные предсказания становятся достоверными. Родоначальник современной генетики Грегор Мендель провел громадное число опытов по скрещиванию между собой растений с разными признаками. Именно эти опыты и привели к формулировке только что описанной модели передачи наследственных признаков. Так как количество «детей» в этих опытах измерялось сотнями и тысячами, то законы вероятности проявились достаточно отчетливо. Вот, скажем, такой опыт. Горох с гладкими горошинками (Г), скрещенный с горохом с морщинистыми горошинками (М), дает совершенно однородное поколение: все «дети» оказываются гладкими горошинками. Значит, гладкость, согласно нашей модели, есть доминантный признак (запомним это). А связывая особенности полученного потомства от двух сортов гороха с нашей таблицей, мы видим, что они соответствуют третьей строке таблицы. То есть «родители» должны обладать парами генов ГГ и ММ, а «дети» при этом имеют пары генов ГМ. Чтобы проверить справедливость такой модели, скрестим между собой «детей». Вероятностная формула следующего (второго) поколения будет 1/4 ГГ + 1/2 ГМ + + 1/4 ММ. Поскольку Г доминантный признак, то вероятность появления гладких горошинок равна 3/4, а морщинистых 1/4. Следовательно, по мере увеличения числа опытов отношение числа «гладких» «внуков» и «внучек» к «морщинистым» должно стремиться к трем. В одном из опытов Мендель нашел такие числа: 5474 и 1850, то есть отношение оказалось равным 2,95. Отклонение от теоретически вычисленной величины меньше 2 процентов. Таким образом, этот эксперимент, так же как и огромное множество других, которые были поставлены самим Менделем и другими генетиками, находятся в блестящем согласии с вычисленными вероятностями и подтверждают справедливость модели двух черных ящиков, заполненных парами шаров – по паре на каждый ген. Огромный материал, накопленный генетиками, позволяет проводить количественную проверку вероятностных предсказаний. Располагая сведениями о результатах многих десятков экспериментов, в каждом из которых имеются, скажем, по тысяче наблюдений, можно, разумеется, построить кривую распределения признака. Она окажется близкой к «нормальной гауссовой кривой» с центром, совпадающим с теоретически вычисленной вероятностью. Любое отклонение ее от нормальной будет говорить об одном – в предположении о типе генов родителей нами допущена какая-то ошибка. Из сказанного вытекает, что распределение признаков у потомства является основной информацией о типе генов у родителей. И те правила, о которых мы говорили, являются азбукой селекционеров. На их основе проводится практическая работа по выведению новых сортов растений и новых видов животных. Мы и наши предки В том, что дети наследуют внешние черты родителей, никто не сомневается. Однако житейские наблюдения над тем, сколь похожи дети на своих пап, мам и теток, не дает нам основания считать, что природа генов дискретна. Наследственность передается часто в расплывчатой форме, и обычно нос ребенка «напоминает» по форме носы родителей, глаза «примерно» такого же цвета, как у папы или мамы, походка «напоминает» манеру двигаться дяди Коли и т.д. Лишь наблюдения над горошинами и мушками, опыт животноводов, данные селекционеров убеждают в том, что имеются частички наследственности. Что же касается расплывчатого сходства, то, оказывается, оно возникает по той причине, что нос, глаза и другие черты определяются не одной, а многими парами генов. При таком условии будущий ребенок тащит из папиного ящика, скажем, пять-шесть доминантных генов, отвечающих за форму носа, и для окончательного формирования этого важного органа добавляет сюда еще три-четыре доминантных гена из материнского ящика. Именно поэтому довольно редко встречаются дети, выпечатанные в родителей. Как редко? Это вопрос теории вероятностей. Скажем, если наследник вытащил из ящика отца пару десятков доминантных генов, определяющих черты лица (вероятность одна вторая в двадцатой степени, то есть такая, с которой можно считаться), то можно быть уверенным в сходстве, которое обычно характеризуют как потрясающее. Достаточно часто семейное сходство удерживается много поколений. Губа Габсбургов, например, была долгое время неотъемлемым признаком членов этой королевской династии. Однако от поколения к поколению сходство постепенно падает. Если организм определяется малым числом генов то он будет представлен незначительным числом различающихся друг от друга особей. Впрочем, «незначительное» не очень подходящее здесь слово. Если бы генов было всего лишь двадцать, то и в этом случае число нетождественных индивидов равнялось бы миллиону. А сколько их в организме человека? Ответить на этот вопрос можно так: если не говорить об однояйцовых близнецах, то можно смело сказать, что одинаковых людей не бывает. Значит, если гены существуют и представляют собой что-то вроде частичек, то их должно быть очень много (так уж довольно давно думали биологи). Сколько? Добравшись до атомной структуры гена, физики показали, что их число порядка 10 000. Таким образом, число возможных сочетаний генов столь велико, что вероятность встретить своего двойника крайне мала. Наличие в организме человека генов, отвечающих за его физиологические признаки – черты лица, конституцию, склонность к тем или иным заболеваниям и прочее, – является неоспоримым фактом. Возникает естественный вопрос: а духовный облик человека – это тоже его генетический признак вроде рыжих волос? Имеется много людей, которые отвечают на этот вопрос утвердительно и потому удивляются, когда оказывается, что у добродетельных родителей может быть сын хулиган. Более того, существуют и такие люди, которые считают возможным стать на путь обобщений и изрекать глубокомысленные сентенции вроде того, что человек от природы добр, или зол, или глуп и коварен. Это, конечно, неверно. Ближе к истине старинное изречение, что ребенок при рождении – это чистая доска «tabula rasa». Конечно, то, что будет записано на доске, определяется средой, в которой рос и воспитывался ребенок. Однако современная генетика заставляет нас помнить, что целый ряд конкретных поведенческих реакций животных наследственно закреплены. Так что в генетических особенностях эмоционально-поведенческого склада сомневаться не приходится. Поэтому мы не станем уверять читателя, что биологическая природа человека никак не связана с его духовным обликом. Разумеется, связана каким-то сложным способом, исследование которого явится увлекательной задачей науки в ближайшие десятилетия. Эта связь – так подсказывает нам человеческий опыт – в основном сводится к тому, что биологически разные (то есть разно построенные из биологических молекул) организмы могут быть по-разному предрасположены к приобретению тех или иных свойств разума и души. Одного человека легче воспитать добрым, другого труднее, одного легко научить математике, а другого труднее, зато он легко познает приемы живописи. Пока что молекулярная биология не может нам сообщить, что означают эти «легко» и «трудно» на языке атомов и молекул. Когда же модель, демонстрирующая роль биологической структуры в воспитании человека, будет создана, она, вероятно, будет кой в чем напоминать огромный шкаф с бесчисленным количеством подразделений, полок и ящичков, стенки которых сделаны из резины. На эти полки будут складываться приобретаемые в результате воспитания многочисленные моральные, эстетические и рационалистские ценности. Для каждой из них свое место в шкафу. Существует, скажем, полка логических способностей. У одного она от природы широка, у другого узкая. Но стенки резиновые, и с помощью воспитания количество багажа, втиснутое с трудом на узкую полку, может оказаться значительным. Напротив, при отсутствии воспитания широкая полка остается незаполненной. В результате менее «одаренный» человек достигнет больших вершин, чем тот, который не сумел, не захотел или не осознал возможности воспользоваться тем, что ему было подарено природой. Пустой шкаф, символизирующий мозг новорожденного, является таким же предметом статистики, как рост ребенка или вес. Каждый из ящиков, предназначенных для того или иного свойства, имеет средние размеры и средние упругие свойства стенок. Отклонения от средних значений подчиняются гауссовым кривым, которые и являются биологической характеристикой общества. Эти кривые важны – от них зависит легкость воспитания и образования тех или иных свойств разума и души человечества. В то же время ясно, что они не определяют ни морали, ни культуры общества: шкаф пуст, пока человек не воспитан обществом. Моральные устои, религиозные убеждения, политические мнения являются результатом воспитания. Стенки ящичков, предназначенных для хранения моральных ценностей, достаточно гибкие, и люди, принадлежащие одному классу общества, естественным образом окажутся объединенными общей идеологией безотносительно различий в структуре своих генов. Различия в духовном облике, в уровне и характере культуры, в моральных совершенствах народа могут быть колоссальными при одной и той же биологической (генетической) характеристике. Об этом свидетельствует история. Представьте себе необитаемый остров, на который кораблекрушение выкинуло Адама и Еву – родоначальников нового человеческого племени. Наследники этих прародителей в любом поколении будут обладать комбинациями генов, которыми владели Адам и Ева. Предположим, что Адам и Ева народили много детей. Если так, то оба гена, составляющие каждую пару, пойдут в дело в равной степени. Значит, пропорция генов голубоглазия и кареглазия, генов рыжих и черных волос, больших и маленьких ящичков, предназначенных для обучения добру и злу, математике и живописи, остается неизменной в каждом поколении. Это действительно верно для каждого замкнутого общества, но с одной существенной поправкой. Хотя гены – частички очень прочные, все же в среднем один ген из десяти тысяч за одно поколение, оказывается, портится. Причины порчи могут быть самыми разными, и прежде всего играют здесь роль всякие радиации. Таким образом, медленно, но верно и в замкнутом обществе происходят изменения. С точки зрения геолога, меряющего историю планеты сотнями миллионов лет, генетические изменения происходят быстро. Но историку, ограничивающему свои интересы двумя-тремя тысячами лет, то есть временем какой-нибудь сотни поколений, порча генов кажется явлением совершенно незаметным. Отсюда следует достаточно жестко, что по составу генов люди XX века вряд ли отличны от древних греков или римлян: тот же процент талантливых людей, тот же процент людей, из которых легко воспитать солдат или полководцев, равные доли голубых и черных глаз. Коренные изменения происшедшие с человечеством, не связаны с изменениями рисунка его генов. Современный человек отличается от того, который жил до так называемого рождества Христова, тем, что он иначе образован, живет в другой среде. Генетическая природа человека не изменилась, значит, те колоссальные различия, которые мы наблюдаем в людях разных веков, в членах обществ с различным социальным строем, – эти различия являются функцией образования, которое, в свою очередь, определяется классовыми интересами общества. По биологической своей сути мы те же, что наши далекие предки. Тем не менее мы совсем другие. Иначе воспитаны. * * *По логике повествования следовало бы теперь обратиться к структуре гена и пояснить, как на языке атомов и молекул выражаются закономерности и случайности передачи генетических признаков. Мы сделаем это, но позже. А сейчас расскажем о роли случайности на путях научного открытия. Заметим сразу же, что тема эта необъятна, поэтому мне хочется при ее освещении проиллюстрировать ее примерами из своей узкой профессии. А занимаюсь я всю свою жизнь применением рентгеновских лучей для исследования органических веществ. Так как это имеет некоторое отношение к открытию структуры гена, то, рассказывая о путях открытия структуры гена, мы узнаем и саму структуру гена. Гвоздь выпал… В одной английской песенке, переведенной С. Маршаком, рассказывается, как гвоздь выпал – подкова отвалилась, подкова отвалилась – лошадь захромала, лошадь захромала – командир убит, командир убит – конница разбита, конница разбита – армия бежит… И так далее, и тому подобное. Короче, получается, что плохо заколоченный гвоздь изменил ход истории. Формально вроде все здесь правильно. И есть много умных, казалось бы, людей, которые вполне серьезно полагают, что именно такие случайные происшествия вроде выпавшего гвоздя или насморка Наполеона перед сражением при Ватерлоо определяют ход истории. Спору нет. Ничтожная случайность влияет на конкретное содержание жизни людей. Каждый из нас, перебрав мысленно свое прошлое, найдет не один пример, когда важный выбор в жизни – вуза, места работы, маршрута туристского путешествия со всеми вытекающими из этих выборов последствиями – определялся какими-то пустяками: брюки порвались, с приятелем поговорил, поскользнулся на апельсиновой корке. И каждая такая чепуха, в свою очередь, определялась какой-то другой мелочью, и так без конца. Проанализировав все эти обстоятельства, нетрудно прийти к заключениям вроде: «Чему быть, тому не миновать»; «Не знаешь, где найдешь, где потеряешь»… Из этих мудростей, в свою очередь, вытекает жизненная философия ничегонеделания, тщетности каких бы то ни было усилий. Жить тогда становится скучно и неинтересно, даже трагично, как героям произведений Ф. М. Достоевского. Какую же ошибку в рассуждении совершают те из нас, кто думает, что случайные изгибы жизненной линии делают бессмысленным управление своей судьбой? Вот какую. В той или иной степени наш разум и воля принимали участие в самых что ни на есть случайных событиях. Вы были недостаточно собранны, когда поскользнулись на улице, недостаточно осмотрительны, когда переходили площадь, плохо отдавали себе отчет в своих возможностях, когда попытались спуститься на лыжах с крутой горы. Спору нет, происшедшее несчастье – событие случайное, то есть в одинаковых (вроде бы) условиях один поступает так, что для него все оканчивается благополучно, а другой платится за свои действия. Существует, например, некоторая вероятность печального события сломать ногу, спускаясь на лыжах с «Приюта одиннадцати» на Эльбрусе. Эта вероятность есть сложная функция от способностей лыжника, от погоды, снежного покрова, лыж и многого другого. Так или иначе многолетняя статистика знает, из какого числа лыжников ломает ногу один. Кто же будет этот один? Самый несчастливый? Да не совсем так! Надо думать, что ничего подобного не произойдет с теми горнолыжниками, которые знают свои силы и умеют быть собранными в моменты опасности. И печальный жребий выпадет тому, кто плохо владеет лыжами, неосмотрителен, у кого малый объем внимания. Кому-то из них, конечно, повезет – их минует опасность, а кто-то расплатится за свои недостатки, и… статистика сработает. Итак, вряд ли стоит пенять на случай в событиях, которые, пусть частично, вполне случайны. В нашей воле было попасть в ту группу людей, для которой вероятность беды измеряется хоть и малыми, но все же значимыми дробями. Еще менее разумно становиться фаталистом из-за того, что, например, вы попали в один поезд метро со своей будущей супругой. То, что случайное знакомство привело к браку, ведь не означает, что вашим поводырем был случай. У вас обоих было время и присмотреться друг к другу, полюбить, и подумать о браке. Что же касается случая, который мог бы вас и не свести в метро, то при всем моем уважении к вашему счастливому браку я не могу думать, что эта встреча была столь уж важной для вашей жизни. – Да, а если бы я ее не встретил? – спросите вы. – Ну что ж, встретили бы другую. Теория половинки разломанного яблока (только две подходящие во всем мире) наверняка несправедлива. Со стороны ваш счастливый или несчастный брак выглядит следующим образом. Для людей вашего склада, возраста, социального положения и так далее имеется некоторая характеристика – гауссова кривая «степени счастливого» брака. Эта кривая наверняка имеет довольно острый средний пик. Скорее всего ваш брак типичен для людей вашей группы. И в то же время есть вероятность, что вы будете счастливее «среднего супруга», и есть вероятность, что вы будете менее счастливы, чем он. Зависит ли от вашей воли и разума, в какую часть гауссовой кривой попадет ваша судьба? Без сомнения. Роль случая в жизни каждого из нас в общем не так-то велика. Случай придает жизни конкретные черты. Но общая схема, «генеральный» вид остаются теми же, несмотря на извивы судьбы. У О. Генри есть такой рассказ (нетипичный для этого писателя). Герой подъехал к перекрестку, от которого идут три дороги. Рассказаны три судьбы, три путешествия по разным дорогам. Герой живет разными жизнями, но оказывается, что это одна жизнь – с теми же моральными взлетами и падениями, с теми же счастьем и горем, с той же концовкой; так сказать, одна мелодия в разных оркестровках. Проиллюстрировать это положение мне хотелось бы примером, наиболее близким мне: я хотел бы рассказать, как я стал физиком, изучающим строение вещества. Совсем мальчишкой я уехал строить медеплавильный комбинат на Урале, который превратился в конце концов в город Красноуральск. То, что я уехал из Москвы из-под крылышка родителей, конечно, не случайно: такова была обстановка в 1929–1930 годах, таково было воспитание, подходящим был мой характер. А то, что я уехал именно в Красноуральск, было делом случая: туда уезжала девушка, в которую я был влюблен. Труд рабочего был тяжелым и непривычным мне. Поэтому, когда стройка закончилась, я вернулся в Москву: разумеется, в этом не было случайности. В Москве я поступил работать лаборантом в институт цветных металлов: понятно, почему именно в этот институт – ведь до этого я работал на стройке медеплавильного завода. Спустя некоторое время захотелось учиться. Куда же пойти? В технические вузы в то время было трудно попасть, а в университет легко. Но на какое отделение? Я выбрал металлофизику. Лишь заканчивая университет, я почувствовал, что меня влечет теоретическая работа и притом такая область знания, где побольше «белых пятен». В университете меня обучали методам исследования структуры металлов, и я подумал о том, а нельзя ли этими же методами изучать структуру веществ, о которых тогда не было ровно никаких сведений, – структуру органических веществ. Однако об этих возможностях думал не только я, но и некоторые прозорливые химики. Я искал работу, а они подыскивали работника. Столкновение произошло быстро и естественно. Так я встал на рельсы, по которым движусь всю свою научную жизнь. Был ли во всем этом элемент случайности? Без сомнения. Но ясно одно, если бы моя карьера началась на автомобильном заводе или на строительстве плотины, то все равно мои индивидуальные качества, помноженные на полученное воспитание, привели бы меня к теоретической работе в области физики, механики или химии. Я мог бы стать специалистом в области гидродинамики или энергетики. Внешне судьба казалась бы иной, а по сути дела той же самой. Итак, автор отрицает роль случая в жизни каждого из нас? Нет, не совсем. Случайности в судьбе каждого из нас имеют, безусловно, место. Но разум и воля вносят существенную коррективу в роль случайностей, которые встречаются на жизненном пути. Если без них жизнь изобразить в виде прямой линии, то со случайностями она будет иметь изгибы, волны, а то и петли. Но общее направление линии остается неизменным – оно предопределено нашим «я» и средой, где мы живем. Если со всеми этими оговорками мы соглашаемся признать роль случая в индивидуальных судьбах, то уж никак нельзя согласиться с тем, что случайности оказывают существенное влияние на ход истории. Историю делают люди. Поскольку реакции их на любую обстановку являются закономерными в том смысле, который мы уже неоднократно обсуждали (ложатся на гауссову нормальную кривую), и так как количество человеческих судеб, решающих историю, очень велико, то статистика больших чисел приводит к однозначному результату. Ход истории в классовом обществе определяется взаимоотношениями классов, интересами классов. Чтобы эти фразы не казались лишенными содержания (какие там классы, когда миллионы людей имеют каждый свою судьбу, желание и возможности), вспомните статистическую природу стимулов к поступкам. Вполне правомерно говорить об интересе, о стремлении и реакции класса или группы людей именно потому, что все характеристики и оценки поведения их ложатся на гауссовы кривые с достаточно острым максимумом. В зависимости от обстоятельств, в которые попадают коллективы, положение вершины гауссова колокола будет сдвигаться, то есть, проще говоря, настроение массы людей меняется, как бы следуя одному дыханию. Знать и понимать статистические закономерности, приводящие к поразительному единению мыслей и эмоций класса людей, – важнейшее свойство политического деятеля. Вспомните слова В. И. Ленина о том, что необходимость и возможность вооруженного восстания созревают к определенному дню: вчера было рано, завтра будет поздно. В основе этого политического лозунга лежит точный расчет момента, к которому наступит классовое единство и которое, в свою очередь, есть строгое следствие закона превращения случайностей в необходимость. Но не будем вторгаться в область исторического материализма, представленную сотнями и тысячами превосходных книг. Остановимся на частном примере, а именно на проблеме случайного и неизбежного в научных открытиях. В науке тоже есть и «невезучие» и «счастливчики». Вот как были открыты рентгеновские лучи – «икс-лучи», как их называл сам Рентген. Лучи икс Профессор Вильгельм Конрад Рентген взглянул на часы, и у него испортилось настроение. Было уже восемь вечера, совсем стемнело, а он обещал жене быть дома в половине восьмого, чтобы встретить вместе с ней госпожу советницу Винтерлебен. Рентгену было скучно с гостями, которые время от времени собирались у них в доме, однако он считал, что гости – это крест, который хочешь не хочешь, а нести надо. А раз надо, то и рассуждать не о чем. Кроме того, Рентген любил свою семью, и меньше всего ему хотелось огорчать супругу. Но и увлекательную работу бросать не хотелось. В общем было из-за чего огорчиться. Профессор вздохнул, снял халат, повесил его на вешалку, набросил черное покрывало на газоразрядную трубку, повернул выключатель, расположенный около двери, и последний раз оглядел заставленную приборами лабораторную комнату. Взгляд привычно обежал столы, шкафы и стены. Рентген уже собирался переступить порог, но какой-то беспорядок, какая-то необычность обратила на себя внимание. Ну да, вот это светящееся пятно на столе около трубки, с которой он только что работал. Немедленно подошел он к предмету, привлекшему его взгляд. Светилась часть экрана, которым пользуются для обнаружения флуоресценции. Такой экран – это картон, покрытый с одной стороны платиносинеродистым барием. Вещество это светится, если на него падают ультрафиолетовые лучи или катодные лучи (что было обнаружено сравнительно недавно), которые, как показал его коллега профессор Ленард, представляют собой, видимо, пучок электронов. Правда, существование этих самых электронов вещь сомнительная и, во всяком случае, недоказанная. Не надо хорошему физику пользоваться словами, засоряющими строгий научный язык. Все это быстро промелькнуло в голове Рентгена, пока другой участок мозга фиксировал странности обнаруженного явления. Экран лежит картоном кверху, а светится. Трубка… Да, трубка работает: он забыл выключить катушку Румкорфа – питание газоразрядной трубки. Проверим. Он выключил катушку, экран медленно погас. Включил. Экран засветился опять. Как странно, неужто катодные лучи проходят через черное сукно, которым покрыта трубка, и через картон экрана? До сих пор он считал, что эти материалы поглощают катодные лучи. Надо еще раз это проверить. Катодные лучи отклоняются под действием магнитного поля, поля самого обыкновенного подковообразного магнита. Катодный пучок им можно отвести далеко в сторону, в сторону от экрана. Пока мозг размышлял, руки уже действовали. Они помещали магнит вблизи экрана в разное положение, но результат был нулевой: экранчик безмятежно светился тем же синеватым светом. Значит, значит… Значит, это что-то новое, какие-то неизвестные лучи, исходящие из трубки. Рентген надел халат… Пусть фрау Винтерлебен считает, что профессор Рентген плохой семьянин, а его жена – несчастная женщина. Признаюсь, детали описанной сцены я выдумал, но главное верно. Открытие произошло потому, что совпало несколько случайностей. Рентген забыл выключить трубку; рядом с трубкой лежал экранчик; на трубку было наброшено сукно. Но на все эти случайности наложилось одно отнюдь не случайное обстоятельство: Вильгельм Конрад Рентген был великолепным физиком-экспериментатором, внимательным и вдумчивым естествоиспытателем с зорким взглядом, чутким ухом и нервным настроем, держащим мозг в состоянии непрерывной боевой готовности. Неслучайным был и тот интерес к явлению газового разряда, который захватил многих физиков, действовавших в разных университетах мира в последнее десятилетие прошлого века. Интерес этот был вызван практической важностью электрического освещения, но затем переместился в область разгадывания тайн природы. Катодные лучи были фактом интересным, но туманным. Чтобы понять их природу, надо было множить исследования их свойств. Поэтому в лабораториях изготовлялись разные трубки и велось изучение всевозможных действий этих лучей. Исследование флуоресценции вещества под действием катодных лучей, как представлялось вполне справедливо большинству физиков, должно было в существенной степени помочь уяснению электронной теории строения вещества. К электронной гипотезе многие физики относились скептически. Но тем не менее ряд серьезных фактов говорил о том, что она не так уж глупа. Как бы то ни было, тщательные исследования воздействия катодных лучей на вещество были на повестке дня. Так что газоразрядные трубки и светящиеся экраны стали более или менее обычным атрибутом физических лабораторий. Из всего этого видно, что открытие новых лучей носилось в воздухе и дело было за талантливым и внимательным физиком-экспериментатором. Конечно, открытие Рентгена в какой-то мере было случайным. Но оно назрело, и если бы в этот день, который мы описали, он закончил бы свою работу засветло и фрау Винтерлебен не была бы разочарована в его супружеской внимательности, то все равно открытие было бы сделано либо тем же Рентгеном позднее, либо другим физиком, но непременно талантливым. Итак, право же, не так уж много во всем этом деле приходится на долю случая. То, что Рентген принадлежал к числу физиков, достойных внимания «госпожи удачи», совершенно отчетливо видно из его научных трудов и рассказов его современников. За короткий период Рентген опубликовал три работы о свойствах новых лучей. Эти сочинения оказались настолько исчерпывающими, что в течение долгих лет, пожалуй, до 1912 года, к ним нечего было добавить. И это притом, что внимание к икс-лучам, как назвал «свои» лучи Рентген, было огромным. Достаточно сказать, что за один-два года после сообщений Рентгена появилось около тысячи публикаций-исследований лучей Рентгена (огромное для того времени число), и все они не внесли в проблему буквально ничего нового. Рентген установил законы поглощения лучей; выполнил образцовые снимки, просвечивая свою руку, а также различные предметы, прячущие внутри себя металл. Фотографии Рентгена по качеству ничуть не уступают самым лучшим сегодняшним снимкам. Нечего и говорить, что оба пути использования лучей – в медицине для диагностики и в промышленности для обнаружения скрытых дефектов – были очевидны для Рентгена. Но он считал себя чистым естествоиспытателем, каким и был на самом деле, не интересовался прикладными свойствами икс-лучей и даже не подумал о том, чтобы взять патент на открытие, которое могло бы принести ему миллионы. Закончив исследования свойств рентгеновских лучей, он перешел к изучению других проблем физики и выполнил еще целый ряд превосходных работ. Совершенно великолепные человеческие качества Рентгена нам хорошо известны из воспоминаний покойного академика А. Иоффе, который долгие годы жил в Германии, был учеником Рентгена, работал в его лаборатории и часто бывал у него дома. Упорно занимаясь исследованием новых лучей, Рентген установил, что они возникают при встрече катодного луча с препятствием, и придал рентгеновской трубке целесообразную форму. В то время физики пользовались так называемыми откачиваемыми трубками (в наши дни трубки откачиваются до полного вакуума и наглухо запаиваются, как электрическая осветительная лампа). Против накаливаемой током нити помещается массивный металлический цилиндр – анод. Электроны, истекающие с нити накаливания, ускоряются полем высокого напряжения, наложенным на трубку (между катодом и анодом), и с силой ударяются о «зеркало» анода. Ударившись об анод, они выбивают из него вот эти новые, рентгеновские лучи, которые сам Рентген назвал икс-лучами. Их можно диафрагмировать, создавать из них пучки и заставлять их проходить через разные тонкие щели. Подобные манипуляции с ними производят для того, чтобы увидеть, отклоняются они от прямого пути или нет. Если бы такое отклонение обнаружилось, то было бы доказано родство новых лучей со световыми. Но новые лучи не отклонялись щелями, не преломлялись, не отражались от обычных зеркал. И природа их оставалась неясной, а значит, и спорной. Лучи эти могли быть потоком частиц, а могли быть и волнами неизвестного до сих пор сорта. Не противоречило опыту и предположение, что лучи принадлежат к семейству электромагнитных волн, то есть все же находятся в родстве со световыми волнами. Для этого надо было предположить лишь, что длина волны новых лучей значительно короче лучей световых. Сам Рентген отсутствие отклонения новых лучей от прямолинейности – отсутствие дифракции – объяснял тем, что они являются продольными электромагнитными волнами. Можно ли измерять расстояния между атомами? Мне придется еще раз отклониться от главной темы книги и напомнить читателю, что такое дифракция и как физики измеряют длину волны. Пусть какое-то неизвестное излучение падает на некий «частокол», представляющий собой правильное чередование щелей и непрозрачных участков. Просочившись сквозь щели, оно продолжает свой путь дальше. В зависимости от того, что были за лучи и что представлял собой забор, возможны такие варианты поведения: лучи идут прямо; лучи отклоняются во все стороны; лучи отклоняются только в некоторых строго определенных направлениях. В первом случае говорят, что лучи не рассеиваются «частоколом», во втором – что они рассеиваются; в третьем – что имеет место явление дифракции. Если на пути лучей, прошедших сквозь такую преграду, поставить фотографическую пластинку, то после проявления ее в первом случае мы увидим только следы неотклоненного луча; во втором – обнаружится размытый след; а в третьем, самом интересном случае, рядом со следом прямого луча мы должны обнаружить на фотопластинке отдельные резкие следы отклоненных лучей. Это и есть дифракционная картина. Если явление дифракции неизвестного излучения будет обнаружено, то этим будет доказана его волновая природа. Из данных опыта несложными рассуждениями, к которым мы сейчас перейдем, можно вычислить длину волны излучения. Знакомство с дифракцией видимого света происходит в школе. Там вам, читатель, показывали маленькое стеклышко, в центре которого матовое прямоугольное пятно. Это и есть дифракционная решетка. На стеклышке нанесено множество параллельных штрихов. Расстояния между штрихами (прозрачная часть) совсем малые – доли микрона. Сами штрихи – непрозрачная часть. Направим на решетку параллельный пучок лучей света и посмотрим, что произойдет. На экране, установленном на пути прошедшего через решетку луча, возникает красивая цветная картина. Ярче всего виден, разумеется, след неотклоненного луча, а по бокам от него возникают радужные полосы. Их несколько. Та полоса, что ближе всего к неотклоненному лучу, называется спектром первого порядка. А теперь поставим на пути первичного луча цветной фильтр. Картина теряет в красоте, но выигрывает в ясности: на экране видны след неотклоненного луча и четкие следы отклоненных одноцветных лучей, которые расположились симметрично – вправо и влево от прямого направления на одинаковые углы. Угол отклонения первого из дифрагированных лучей несет в себе информацию о длине волны света. Зная расстояние от решетки до экрана и измерив, на сколько сантиметров пятно отклоненного луча отстоит от центрального, мы без труда по формуле тангенса вычислим значение этого угла. А как, зная измеренный угол, вычислить длину волны света? На этот вопрос отвечает приведенная здесь простенькая схема. Отклоненные лучи возникают лишь в тех направлениях, где волны, выходящие из разных щелей, распространяются в одной фазе. То есть горбы всех одиночных волн должны образовать плоский фронт. Первый отклоненный луч возникнет тогда, когда волны, исходящие из каждой щели, будут отставать от соседок на одну свою длину. Из схемы ясно, что три величины жестко связаны между собой: расстояние между щелями, длина волны и угол отклонения. У меня был соблазн написать простое тригонометрическое уравнение, которое связывает эти три величины, но я воздержался. Главное, чтобы читателю было понятно следующее: из непосредственно измеряемых величин (расстояние между щелями и угол отклонения) может быть вычислена длина волны излучения. Нетрудно сообразить (для этого надо лишь внимательно посмотреть на рисунок), что отклонение будет тем меньше, чем меньше отношение длины волны к расстоянию между щелями. Значит, результат дифракционного эксперимента – его удача или провал – зависят от соотношения между длиной волны и расстоянием между щелями. Если расстояние между щелями «частокола» много больше длины волны, то мы не заметим дифракции: все отклоненные лучи ничтожно мало отойдут от прямого пути. Напротив, если расстояние между щелями значительно меньше длины волны, то обнаружится рассеяние, но дифракции опять не будет, хотя уже по другой причине. В первом случае распространение излучения происходит так, словно «частокол» и не стоит на дороге луча, а во втором – решетка щелей равноценна одной щели. Как видим, опыт удается лишь в том случае, когда длина волны и расстояния между щелями решетки близки друг к другу. А что значит «близки»? Это когда длина волны раз в десять меньше расстояния между щелями, и лишь тогда дифракционный опыт удается. Как мы уже говорили, Рентген не обнаружил дифракции икс-лучей. Открытие дифракции рентгеновских лучей – важнейшее событие в истории науки, положившее начало проникновению исследователей в атомное строение вещества, – было сделано в Мюнхене, куда профессор переехал вскоре после обнаружения самих лучей (а оно было сделано в Вюрцбурге). История обнаружения дифракции также весьма поучительна для демонстрации того, как иногда случайность совершается с железной необходимостью. Открытие состоялось в результате совпадения нескольких независимых событий. Место и время этого совпадения никак нельзя назвать случайным. Было естественным, что именно в Мюнхене, где кафедра физики возглавлялась Рентгеном, внимание физиков к проблемам рентгеновских лучей было пристальным. Понятно, что здесь был накоплен большой опыт, а потому именно в этом университете были лучшие по тому времени источники рентгеновских лучей. Рентген стремился всем своим влиянием и высоким положением содействовать повышению уровня преподавания и исследований, проводившихся на кафедре физики Мюнхенского университета. Он привлекал для работы лучших ученых. Будучи сам экспериментатором и придавая весьма большое значение высокому уровню теоретической физики, он всячески проповедовал единство этих двух взаимно обогащающих подходов к изучению физических явлений. И не только проповедовал, но и настоял, чтобы ведущий физик-теоретик Арнольд Зоммерфельд занял кафедру теоретической физики. Большие надежды возлагал он и на молодого теоретика Макса Лауэ. Научные интересы этих и многих других ученых были в той или иной степени прикованы к проблеме рентгеновских лучей. К физикам тянулись и кристаллографы, среди которых видным исследователем был Грот, аккуратный собиратель материалов о формах различных природных и синтетических кристаллов. И уж совсем, казалось бы, не имел отношения к научным открытиям тот факт, что была в Мюнхене пивная Хофгартен, где почти все ученые систематически встречались и вели свои многочисленные беседы. Можно ли считать случайным разговор, возникший о природе рентгеновских лучей между лицами, которых мы сейчас перечислили? Конечно, нет. Рассуждения Зоммерфельда об электромагнитном происхождении рентгеновских лучей; идеи Грота о том, что кристаллы должны иметь периодическое строение из составляющих их частиц; блестящая работа по теории взаимодействия электромагнитных волн с кристаллом, сделанная молодым теоретиком Эвальдом, явились тем фоном, на котором предложение Лауэ поставить на пути рентгеновских лучей кристалл и попытаться обнаружить дифракцию совсем не кажется случайным. Все собеседники, присутствовавшие при этом историческом событии, соглашались с тем, что атомы в кристалле расположены на расстояниях, соизмеримых с длиной волны рентгеновских лучей, если только понятие «волна» к этим лучам применимо. Однако сомнение вызывало то обстоятельство, что кристалл – это не «частокол», не линейная решетка щелей, а если и решетка, то трехмерная. И большинство полагало, что четкой картины, возможно, и не будет. Лишь Макс Лауэ утверждал, что картина обязательно возникнет и, как рассказывает А. Ф. Иоффе, поспорил с остальными на коробку шоколада. Лауэ поручил провести эксперимент своему ассистенту Фридриху. Неясно было, где ставить фотопластинку, поскольку никто не знал, как должна происходить дифракция от пространственной решетки, построенной из атомов. Решили поместить ее под углом девяносто градусов к падающему лучу. Рентгеновскую трубку включали каждый день на много часов, проявляли одну пластинку за другой, пробовали менять положение пластинки, действуя примерно так, как мартышка с очками. Не получалось. Надо заметить, что третьим действующим лицом в этом ансамбле был некто Книппинг. В его обязанности входила работа по перемещению пластинок в новую позицию. Видимо, именно он явился орудием «его величества случая», ускорившим развязку пьесы. Небрежно выполняя указания руководителя эксперимента, Книппинг поставил пластинку не на указанном месте, а за кристаллом, на пути проходящего луча. К концу фотографирования пришел Фридрих и обнаружил, что его распоряжение нарушено и, досадуя, велел пластинку выбросить и поставить новый опыт. Но вмешался опять «его величество случай» и, дернув кого-то из двоих за рукав, заставил проявить пластинку. Так было сделано открытие. Покажется, что случай сыграл здесь решающую роль. А по-моему, совершенно пустяковую. Рано или поздно даже бездумное перемещение фотопластинки увенчалось бы успехом. Но если бы этого и не случилось, то Лауэ, начавший разрабатывать математическую теорию явления, без сомнения, вывел бы условия дифракции, которые показали бы, где надо ставить пластинку, чтобы обнаружить эффект. Наконец, если бы Лауэ заболел, а Книппинг был бы вполне аккуратным исполнителем, а Фридрих не допускал бы возможности другого подходящего места для пластинки, кроме как под прямым углом к лучу, то все это свелось бы к тому, что через полгода или год открытие дифракции было бы сделано в Англии отцом и сыном Брэггами. Брэгг-отец в то время придумывал самые разные подходы для исследования характера рассеивания рентгеновских лучей разными объектами и был также близок к обнаружению законов отклонения рентгеновских лучей. Явление, о котором идет речь, оказалось в 1912 году яблоком, вполне созревшим. Легкого дуновения ветра было достаточно, чтобы оно упало, и тайное сделалось явным. Пришла пора этому открытию, весь комплекс случайностей был существенным лишь для самого несущественного: месяцем раньше или месяцем позже; в Англии или в Германии; Лауэ или Брэгг. Разве это важно? Два крупнейших научных открытия – открытие рентгеновских лучей и наблюдение дифракции этих лучей превосходно, как мне кажется, иллюстрируют эфемерную роль случайности в событиях такого рода. Но число подобных примеров можно было бы умножить. Делать этого мы, однако, не станем, а скажем лишь, что остановились мы на рентгеновских лучах не случайно, так как без знакомства с их дифракцией мы не доберемся до структуры гена. Радости и огорчения структурщиков Есть большое семейство исследователей, которое называется структурщиками. Такого слова в словаре нет, так как оно жаргонное, лабораторный слэнг, но распространенное. Физики, химики, биологи называют так тех, кто занят определением атомной структуры вещества, кто всей своей работой пытается ответить на вопрос: как вещество построено из атомов (как устроен сам атом интересует людей другой специальности). В своей работе структурщики используют явление, открытое Максом Лауэ: наблюдают дифракцию рентгеновских лучей от кристалла, структуру которого хотят определить. Как уже говорилось, при прохождении луча через кристалл на фотопластинке обнаруживается картина со множеством пятен – следов отклоненных (диафрагмированных) лучей. Если ставить кристалл под разными углами к лучу, то каждый раз мы будем фиксировать другие пятна. Всего от кристалла средней сложности можно получить несколько сот или даже несколько тысяч разных дифракционных пятен. Расстояния между пятнами, а также их интенсивность хранят богатейшую информацию о структуре всего кристалла и составляющих его молекул. Но извлечь из таких картин сведения о пространственной конфигурации одной молекулы и о взаимном расположении всех оказывается задачей совсем нелегкой и, естественно, тем более трудной, чем сложнее химическая формула молекулы. Насколько задача определения структуры кристалла (трехмерное тело) сложнее нахождения расстояния между щелями дифракционной решетки (двухмерный объект), простейшего примера использования дифракционного опыта для определения геометрии объекта, поясним на таком сравнении. Аналогом кристалла в двумерном мире, очевидно, будет «решетка» обоев. Пусть на обоях в детской комнате изображены девочки, играющие с мячом. Все девочки и все мячи, разумеется, совершенно одинаковы. Художник мог по-разному расположить этих девочек: либо одну над другой, либо с каким-то сдвигом, либо по три девочки в вершинах треугольника и т.д. Короче говоря, девочки могут быть расположены, или, как говорят в отношении молекул, упакованы по-разному. Вполне понятно, что при описании обоев вовсе недостаточно лишь указать расстояния между девочками и их взаимное расположение; нужно знать, как нарисована девочка: какое у нее платье, какие кудряшки, какой мячик и где он находится. Так и для кристаллического вещества нужно знать не только упаковку молекул, но и знать, как построена молекула. А получить эти сведения во много раз труднее, чем измерить расстояние между девочками на обоях и описать их вид. Кристалл построен из молекул, которые вполне аккуратно, то есть периодически, заполняют пространство, образуя трехмерную пространственную «решетку». В какой же связи находятся пятна на рентгенограмме (так называется пластинка, на которой зафиксированы дифракционные пятна) с упаковкой молекул и строением каждой молекулы? Если говорить о принципиальной стороне дела, то ответить на этот вопрос легко. Только что при помощи простого рисунка мы пояснили, как появляются соотношения между углом отклоненного луча и расстоянием между щелями дифракционной решетки. Природа связи между рентгеновской дифракционной картиной и структурой вещества та же самая. Но количественное усложнение – переход от простой линейной последовательности рассеивающих объектов (щелей) к сложнейшему пространственному рисунку атомов, берущих на себя роль рассеивающих центров, – воистину грандиозное. Уже давно решение математических задач поручено вычислительным машинам. Сотрудничая с математиками-программистами, я не раз пытался объяснить сущность радостей и горестей структурщиков. Как правило, такие собеседования выглядели примерно так. Прежде всего я выписывал на листе бумаги основные математические уравнения (они были получены уже самим Лауэ). – Данные опыта, – пояснял я программисту, – это сведения о направлении отклоненного луча и его интенсивности. Вот соответствующие символы. – Ясно, – следовал ответ. – Нам нужны данные о структуре. – В каком виде? – Конечно, нужны координаты атомов. А еще лучше, если бы машина рисовала трехмерную картину; есть же аналоговые машины. Пусть картина будет условная: атомы – это точки, а силы связи – штрихи. – Но позвольте! – вглядываясь в написанные мной уравнения, говорит программист. – Не морочьте мне голову рисунками, у вас тут дела посложнее: уравнения-то не решаются! – Ну, не совсем так, – говорю я со вздохом. – Все же решаются, но не в нужную вам сторону. Дело в том, что характер этих уравнений таков, что, решив их, можно представить себе интенсивность и направление лучей (то есть можно составить суждение о виде рентгенограммы), если известна структура. Но нам-то надо решить обратную задачу – по виду рентгенограммы установить расположение атомов. А это вот и не получается. Проблема «квадратного корня» – так называл я в лекциях эту проклятую трудность, мешающую превратить богатейшую опытную информацию в четкие картины структуры. Уравнение y2 = x решается только в одну сторону. Если известен y (скажем, плюс пять), то недвусмысленно вычисляется x (будет 25). Если же имеются сведения об х (25), то y может равняться плюс 5 и минус 5. У структурщиков же не одно такое уравнение, а тысяча, и с помощью рентгенограммы можно найти тысячу разных игреков с точностью до знака. Ситуация досадная, и, несмотря на то, что этим методом были определены структуры простейших молекул, специалистам в области рентгеноструктурного анализа стало понятно, что, если проблема решения этих уравнений повиснет в воздухе, толку от метода не будет. Пока задачи были несложными, трудность обходили самым простым способом. Так, если уравнения не позволяют переходить от рентгенограммы к структуре, то они неплохо прокладывают путь от структуры к рентгенограмме. Этим обстоятельством мы и пользовались. – Вот эта структура кажется мне весьма логичной, произведите, пожалуйста, расчет рентгенограммы, – прошу я сотрудника. На следующий день сопоставляем полученный расчет с опытными данными. – Ничего похожего! – с нескрываемым удовольствием говорит коллега. – Я ведь говорил, что этот атом кристалла надо посадить вот сюда. – Посадите, – говорю я мрачно. Так, внося небольшие изменения в рисунок «обоев» (подвинув мяч, изменив форму кудряшек, удлинив платьице) и сравнивая расчеты с опытом, пытаемся приблизиться к истине. Действуя этим методом, который англичане назвали образно методом «проб и ошибок», в конце концов добиваемся удовлетворительного совпадения расчетов с опытом. Минусов в такой работе два, и значительных. Во-первых, даже мало-мальски сложные случаи требуют колоссальных расчетов. Во-вторых, все время остается сомнение, что есть и другие решения, которые не хуже сходятся с опытом, но остались нами не замеченными. Было придумано множество математических ухищрений, которые облегчали задачи. Но довольно долгое время проблема казалась почти неразрешенной. Значительный шаг вперед был сделан в середине тридцатых годов. Теоретически было показано, что уравнения решаются более или менее достоверно в нужную нам сторону (от рентгенограммы к структуре) в случае, если исследуемая молекула содержит один тяжелый атом, и тогда проблему «квадратного корня» удается обойти. Но что делать, если интересующая нас органическая молекула не содержит таких атомов? Ввести?! Химики, если захотят, легко могут провести эту операцию. Но вводить такой атом надо умело, чтобы не испортить вид молекулы. В разных случаях это приходится делать по-разному: один раз тяжелый атом-метку выгодно крепить в одном месте молекулы, другой раз – в другом. Так получаются «меченые» вещества, которые обычно и решают задачу. Метод «тяжелого атома» и метод «проб и ошибок» могут применяться совместно. Первый подсказывает исследователю-структурщику, какие модели молекул имеет смысл пробовать, а второй – позволяет ему более уверенно угадывать знаки квадратных корней. Метод «тяжелого атома» довольно простой и автоматичный, и его выполнение может быть легко запрограммировано для электронно-вычислительной машины. Но у него есть и недостаток – он не нагляден. Второй метод более творческий, требует хорошего знания всех закономерностей, наличия развитой интуиции и использует для наглядности модели. Кроме того, они по силам бедной лаборатории, не имеющей еще ЭВМ. Не приходится удивляться, что среди представителей класса структурщиков – в настоящее время их число во всем мире наверняка перевалило за десяток тысяч в зависимости от способностей, темперамента и характера мы находим как сторонников игры на моделях, то есть любителей «угадать» структуру, так и лиц, полагающих необходимым следовать некоторой строгой процедуре, не содержащей в себе произвольных выдумок. Сказать, какой из этих двух характеров «лучше», разумеется, нельзя. Можно привести примеры великолепных успехов, достигнутых на обеих дорогах. Превосходной иллюстрацией могут быть как раз работы по изучению структуры биологических веществ. Нобелевская премия за первое определение структуры белковой молекулы была присуждена Максу Перутцу, который потратил почти четверть века на расшифровку рентгенограмм различных производных белка, помеченных тяжелыми атомами. И та же Нобелевская премия за открытие структуры гена была дана Уотсону и Крику, которые достигли успеха, угадав структуру, играя на моделях. Есть ли у науки история? Каждое открытие в науке есть результат слияния множества логических линий, опытных исследований и теоретического мышления. Я представляю себе историю науки в виде огромного листа белой бумаги, по которому невидимые руки чертят одновременно сотни, тысячи кривых, прямых, зигзагообразных, ломаных, всяких линий, и каждая из них, несмотря на повороты, упрямо следует своему направлению. Потом какие-то две линии встречаются, затем к ним прибавляется третья, четвертая, так постепенно создается тот мощный поток, который несет в себе весь опыт и всю мудрость знания, которое и есть Наука. Слияние линий дает открытие. Оно неизбежно, и момент его в небольшой степени случаен. Оглядываясь назад, мы поражаемся тому бесконечному числу тоненьких ручейков, без которых было бы невозможно решающее пересечение. Прослеживая ход всех линий, берущих свое начало в глубине веков, при желании можно перекинуть мост от законов Ньютона и Менделеева к открытию молекулярного строения гена. Но такие рассуждения могут показаться формальными. Чтобы получить яркую картину рождения открытия, достаточно включить в круг внимания несколько поколений его предков. Так, к ответу на вопрос, что такое ген, привели вот какие линии: развитие метода дифракции рентгеновских лучей; развитие представлений о пространственном строении молекул и кристаллов (впрочем, тесно переплетающихся с прогрессом рентгеноструктурного анализа); развитие биохимических исследований строения составных частей живой клетки, прогресс описательной генетики. Свидетелем и участником самых первых шагов науки в области применения дифракции рентгеновских лучей к изучению строения органического вещества был я сам. Эта важнейшая часть истории интересующего нас открытия началась в тридцатых годах. Да, всего лишь каких-нибудь тридцать-сорок лет тому назад. Получается так, что человек лет пятидесяти с небольшим хвостиком, по заверениям геронтологов только что покинувший период юности, который длится до пятидесяти лет (зрелый возраст – сообщаю для сведения молодых читателей, которым сорокалетние кажутся дряхлыми старцами, – длится от пятидесяти до семидесяти лет, после чего наступает старость, которая длится сколько бог даст), может писать историю науки. На первый взгляд это может показаться странным. Но только на первый взгляд. Небольшой экскурс в статистику поможет понять, в чем тут дело. Социологи, изучающие так называемый прогресс общества, характеризуют его временем удваивания. Оказывается, самые различные события, такие, как число технических изобретений и число автомобильных катастроф, число новых городов и количество людей, умирающих от инфаркта, число научных работников и расходы на вооружения – все это может быть изображено кривыми геометрической прогрессии. А свойство прогрессии, как известно еще со школьной скамьи, состоит в том, что имеется возможность характеризовать рост, происходящий в геометрической прогрессии, временем удваивания. Времена удваивания населения, научных работников, телевизоров, мощности взрыва бомб, энергии электронов, достигаемой в ускорителях, числа разводов, числа сочиненных стихотворений и так далее и тому подобное, разумеется, резко отличаются друг от друга. Одни параметры растут медленно, другие уменьшаются, третьи растут быстро. Однако замечательным является то обстоятельство, что время удваивания сохраняется одним и тем же во все времена, насколько нам удается заглянуть в глубь истории. Можно составить таблицы времен удваивания для разных стран, можно это делать для мира в целом. Нижеследующие числа относятся ко всему миру, а значит, носят весьма усредненный характер. Население, рабочая сила, число университетов удваивается за 50 лет. Число важных открытий, точность инструментов, число учащихся на тысячу человек населения удваивается за 20 лет. Число научных статей, число ученых со степенями удваивается за 15 лет. Число телефонов, число инженеров, скорость транспорта удваивается за 10 лет. Магнитная проницаемость железа, число международных телефонных разговоров удваивается за 5 лет. Нас интересует научная деятельность человечества и прежде всего рост числа научных работников. Число удваивания, которое мы привели для научных статей (оно равно 15 годам), справедливо и для числа научных работников. На первый взгляд оно может показаться скромным. Но займемся арифметикой. В XVIII веке лица, которых можно было назвать научными деятелями, встречались весьма редко. Во всяком случае, их можно было перечислить по фамилиям. Медленный рост привел к тому, что в 1800 году в США было примерно 1000 человек, занимающихся наукой. Через 15 лет их стало 2 тысячи; еще через 15 лет – 4 тысячи и еще через 15 лет – 8 тысяч. Как видите, удваивание за 15 лет означает примерно удесятерение за 50 лет. Итак, к 1850 году одна тысяча породила 10 тысяч, к 1900 году 10 тысяч превратились в 100 тысяч, и к 1950 году мы имели, округляя, один миллион научных деятелей в одних только Соединенных Штатах. Этот постоянный мерный рост (а не взрыв, как по неведению считают многие) с удваиванием научной деятельности каждые 15 лет приводит нас к следующему интересному заключению. У науки практически нет истории, она почти вся осуществлена за время жизни одного поколения. Судите сами. Будем считать, что срок деятельности ученого равен 45 годам. Так как каждые 15 лет число научных работников удваивается, то это значит, что за время научной жизни нашего седовласого современника в науку вошло 7 новых деятелей (1 + 2 + 4), то есть 87,5 процента. Итак, примерно девяносто процентов научных работников, живших от Адама до наших дней, живы по сегодняшний день. Не мудрено, что главные успехи науки, которые позволили ей стать производительной силой, достигнуты на глазах одного поколения. Вот почему теперешний пятидесятипятилетний-шестидесятилетний ученый может считать себя очевидцем почти всей истории науки и приступить к рассказу об истоках открытия структуры молекул, управляющих жизнью на Земле. Как уже упоминалось, я решил заняться исследованием структуры органических веществ методом рентгеновской дифракции потому, что эта область была «белым пятном» на карте науки. На самом деле пятно это уже начали тогда зачернять англичане и американцы; но я об этом не знал, и мои университетские наставники говорили, что таких научных работ им встречать в журналах не приходилось. В 1935 году, когда я кончал Московский университет, шла интенсивная работа по созданию задуманного Алексеем Максимовичем Горьким гиганта медицинской науки. Максим Горький предполагал собрать в одном учреждении представителей всех разделов физиологии, биологии, физической химии, органической химии и физики, нацелив их на исследование жизненных процессов. Так был создан Всесоюзный институт экспериментальной медицины (ВИЭМ). Под одной крышей трудились многие специалисты. Физиологи вели работу с подопытными животными (беспрерывный лай собак под окнами моей лаборатории в памяти у меня по сие время). Психологи донимали всех сотрудников института своими бесконечными тестами на сообразительность, на объем внимания, на ассоциативное мышление, на находчивость, на быстроту реакции и еще бог знает на что; испытывалось влияние на все эти качества самых разных факторов: и утомляемости, и времени года, и влияния темноты, и электрических полей, и высоты над уровнем моря, для чего организовывались желанные экспедиции на Эльбрус. Химики занимались выделением и изучением белков, веществ, вызывающих рак, исследовали лечебные свойства различных веществ: природных и синтетических. Физики занимались широчайшим кругом вопросов: от исследования влияния пения на зрение до конструирования счетчиков ионизирующего излучения. Работа кипела. В одном из отделов ВИЭМа было решено наладить изучение строения биологически важных веществ различными физическими методами. Это направление возглавлялось биохимиком С.Р. Мардашевым. В основу этих работ была положена идея – от простого к сложному. Тогда никто не мечтал в обозримом будущем исследовать структуру таких огромных и сложных молекул, как белки. Что же касается нуклеиновых кислот, то о них химики имели вообще самое смутное представление. Но знали, что белок построен из полипептидов, а полипептиды состоят из аминокислот, следовательно, с них и надо начинать. Эта абсолютно правильная идея, которая и привела в конечном счете к успеху в решении структурной проблемы в биологии, начала разрабатываться примерно тогда же и в США Лайнусом Полингом. Масштаб – сто миллионов Во время второй мировой войны наша страна и Америка находились далеко не в равном положении. Относительно скромное участие США в войне разрешало им не только не свертывать, но даже развивать теоретические научные исследования, которые не имели непосредственного отношения к военному потенциалу. Совсем не так было у нас. Исследования, не работавшие на оборону, были прекращены, и лаборатории, повернуть которые на военные дела было невозможно, поддерживались в состоянии своего рода анабиоза. Их не закрывали, так как помнили, что наступит победный конец войне, и мирились с тем, что некоторые силы, необходимые потом, существуют в состоянии спячки. Два-три научных работника, представляющие ту или иную область, сохранялись так, как в голодные годы берегут семена будущего урожая… Вернувшись к науке после войны, я продолжал прерванную работу так, будто не было четырехлетнего перерыва. Но, конечно, все мы очутились в весьма невыгодной по отношению к нашим заокеанским коллегам позиции. Они ушли вперед. Чтобы ликвидировать отставание в тех областях науки, которые были необходимы для сохранения нашей страной ее высокого положения на мировой арене, были отпущены огромные средства. Что же касается физиков, работа которых не имела отношения ни к атомной энергии, ни к полупроводникам, то им пришлось заниматься в основном разработкой теорий, поскольку для этой цели нужны лишь бумага да карандаш и можно, хотя и с сожалением, обойтись без дорогостоящей аппаратуры. А что, если добавить к письменным принадлежностям несколько килограммов воска, газовую горелку и пару металлических формочек? Зачем? Да чтобы изготовлять шарики, которые должны были изображать атомы в масштабе один к ста миллионам, и из них строить модели молекул. Как выглядит модель молекулы? Представим себе модель молекулы нафталина. В масштабе сто миллионов один ангстрем превращается в сантиметр, и молекула нафталина, состоящая из восемнадцати атомов, умещается на ладони. Красивая молекула. Глядя на такие модели, можно поразмыслить над тем, как молекулы упаковываются в твердом теле, увидеть и понять, как такая молекула повернута по отношению к соседней и как подходит к ним третья молекула. Возясь с моделями, можно убедиться, что проще собрать из моделей структуру и вместо словесного описания привести фотографии. Но сколько надо было приложить усилий, чтобы в кустарных условиях наладить отливку шариков, готовить из них срезы, скреплять все это воедино, сверлить в них отверстия, чтобы они надевались на стерженьки, укреплять молекулы на штативах, чтобы можно было их поворачивать друг к другу под любыми углами. Года через два работа с моделями начала приносить плоды. Результат был ощутимый и окупал затраченные труды с лихвой. Рассматривая упаковки органических молекул в кристаллах для тех немногих случаев, где характер взаимного расположения молекул был заранее установлен, удалось подметить важный закон: оказалось, что молекулы упаковываются плотнейшим образом. Для проверки этой гипотезы нужно было предсказать упаковку молекул в структурах, которые были еще неизвестны. Это было сделано, и последующие опыты подтвердили справедливость принципа, обладающего большой эвристической ценностью. Так наметился новый путь поиска неизвестной структуры, и стало ясно, что молекулярные модели являются не только наглядным пособием, но и средством исследования. В конце сороковых годов в жизнь начали входить синтетические полимерные материалы. Поскольку население планеты стало одеваться в нейлон и капрон, другие же синтетические вещества приобрели важнейшее значение в промышленности, то их структура стала предметом исследования многих лабораторий мира. Прежде всего по этой причине, а также потому, что полимерные вещества обладали рядом особенностей, интересных для естествоиспытателей, на эти работы стали отпускать побольше средств. Молекулы полимерных материалов – это молекулы-гиганты. Большей частью они представляют собой линейные последовательности, цепочки атомов, достигающие иногда феноменальной для мира атомов длины – порядка микрона. С самого начала казалось очевидным, что представления о молекуле как о физическом теле помогут решить множество вопросов в химии молекул-гигантов. На одном из первых всесоюзных съездов, посвященных этим веществам (начало пятидесятых годов), я демонстрировал свои игрушки, изображавшие полиэтиленовые молекулы. Каждая из них была длиной с полметра. Она изгибалась и крутилась как змейка, ибо (это следовало из многих фактов) части ее, соединенные ординарной химической связью (одним валентным штрихом), могли поворачиваться около линии этой связи. Таких «шарнирных» связей в молекуле много, поэтому она и извивается, принимая самые причудливые формы. Показывалось много моделей, и все они опровергали бытовавшее тогда мнение, будто в полимерных материалах цепи молекул беспорядочно перепутаны. Перекручивая модельки, можно достаточно убедительно показать, что, во-первых, в спутанных цепях неминуемо образуется огромное число больших пустот, отчего сильно уменьшается плотность вещества (а это противоречит опыту), и, во-вторых, невозможно объяснить поведение легко кристаллизирующихся полимеров таким допущением. Как выяснилось позже, очень интересное применение молекулярным моделям нашел Полинг. В его лаборатории систематически исследовались структуры аминокислот. В процессе этого исследования, а также для иллюстраций полученных результатов широко использовались объемные модели молекул. Белок, как известно, построен из последовательно соединенных аминокислотных остатков. Что может быть естественнее попытаться собрать из моделей аминокислот кусочек белковой молекулы? Эта задача была выполнена Полингом в начале пятидесятых годов. Из срезанных шариков-атомов, скрепленных друг с другом стерженьками, была собрана так называемая альфа-спираль. Полинг показал, как изящно и непринужденно складываются атомы в устойчивое спиральное образование. Из этой модели следовали геометрические размеры: шаг спирали, диаметр спирали, которые могли быть сверены с данными рентгеноструктурного анализа уже не аминокислот, а самих белковых молекул. Работы по упаковке молекул и работы Полинга по изучению формы молекул подхватили многие исследователи. К этому времени уже не надо было доказывать, что успешная работа в области исследования структуры сложных органических веществ должна состоять из комбинации рентгеноструктурного анализа и работы с моделями. Но все же деление структурщиков на «ригористов» и «авантюристов» сохранилось. Одни исследователи полагали, что модели надо использовать лишь для проверки результатов, полученных строгим академическим путем, другие считали, что решение сложных проблем обязательно надо начинать с моделей. При определении структуры гена встретились исследователи обоих кланов, и проблема в конечном счете была решена атакой с двух сторон. Двойная спираль Открытие химической природы генетического материала было сделано учеными, изучавшими передачу наследственности у микроорганизмов. Этим веществом оказалась дезоксирибонуклеиновая кислота, которую, чтобы не ломать язык, называют ДНК (дээнка). ДНК содержится в хромосомах всех клеток. Фундаментальным обстоятельством, добытым исследователями, является то, что при делении клетки количество ДНК удваивается, и притом совершенно точно. Каждое новое существо возникает благодаря слиянию так называемых гамет. Гаметы образуются из половых клеток. Половая клетка, как и всякая клетка, состоит из парного числа хромосом. При ее делении все пары расходятся и каждая гамета получает по одному представителю каждой хромосомной пары. При делении половой клетки и образовании гамет наблюдается уменьшение количества ДНК вдвое. Эти и некоторые другие сведения, полученные рядом выдающихся генетиков и бактериологов к сороковым годам, позволили достаточно уверенно ставить знак равенства между проблемой структуры гена и задачей определения структуры молекулы ДНК. Во всяком случае, такого мнения держался молодой американский микробиолог Джим Уотсон, когда прибыл на стажировку в Европу в 1951 году. Уотсон не сразу нашел то самое место, вероятно единственное, где были люди, которые могли ему помочь и принять участие в решении задачи, важность которой ему была очевидна. Этим местом оказалась лаборатория Брэгга, младшего из двух Брэггов, которые 40 лет назад открыли метод рентгеноструктурного анализа, показав, что этот метод позволяет найти расположение атомов в таких «сложнейших» кристаллах, как поваренная соль. Кстати, лаборатория эта сохранила за собой мировое первенство в области определения структур кристаллов с помощью рентгеновских лучей, и все другие английские лаборатории, занимающиеся теми же проблемами, отпочковались в свое время от лаборатории Брэгга. У Брэгга Джим Уотсон нашел коллегу – физика Фрэнсиса Крика, с которым и приступил к исследованиям. Двухлетняя совместная их работа привела к открытию структуры ДНК. Ко времени начала дружбы Уотсона и Крика была обнародована работа Полинга по структуре белковой альфа-спирали. Именно это исследование и привело Уотсона и Крика к мысли, что атака на структуру ДНК должна быть сделана тем же методом. Они решили конструировать возможные модели ДНК и сравнить параметры полученных моделей с экспериментальными данными, полученными в другой лаборатории Морисом Уилкинсом и Розалиндой Франклин. Работа была начата не на пустом месте. Самое главное, им был ясен сам принцип работы с моделями. Атомы надо было размещать так, чтобы они не налезали друг на друга, чтобы вся большая молекула сворачивалась на себя как можно компактнее. При этом нельзя допускать искажения расстояний между химически связанными атомами, не надо также портить и валентные углы. Что же касается порядка, в котором соединены атомы в огромной линейной молекуле ДНК, то здесь практически все нужные сведения уже были установлены химиками. Было известно, что ДНК – полимерная молекула. Единицей строения ее является нуклеотид, который состоит из соединенных друг с другом фосфатной группы, сахарной группы и основания. Чередованием фосфатных и сахарных групп строится основная цепь этой полимерной молекулы. Основания являются привесками. Было известно, что эти привески бывают четырех сортов: аденин и гуанин – частицы побольше размером, и цитозин и тимин – частицы меньшего размера. Можно было предполагать, что сахарно-фосфатная часть цепи строго регулярна. Что же касается оснований, то они обязательно должны быть распределены вдоль цепи совершенно нерегулярным образом. Уотсон и Крик уже с самого начала предполагали, что именно в этом разнообразии возможных расположений оснований вдоль цепи молекулы и кроется разнообразие генов. Собрав модель кусочка молекулы, можно было убедиться в том, что далеко не все конфигурации цепи возможны. Вдохновленные примером Полинга исследователи ДНК поняли, что и эта молекула образует спираль. Но, конечно, это был не единственный довод. Еще в самом начале своей деятельности Уотсон получил рентгенограмму ДНК, в которой Крику, великолепному знатоку теории дифракции рентгеновских лучей, удалось увидеть признаки спирального образования. Сопоставление с более обширными и тщательными опытными данными Уилкинса и Франклин показало, что одной спиралью не обойдешься. Диаметр спирали, который определялся по рентгенограммам, требовал, чтобы в образовании структуры участвовало несколько спиралей. Существовали некоторые доводы, что таких спиралей должно быть три штуки. Следовательно, надо было скрутить три спиральные молекулы и припасовать их друг к другу так, чтобы удовлетворить требованиям насыщения всяческих сил, действующих между основаниями этих трех спиралей. Теперь, когда разгадка известна, кажутся совершенно непонятными попытки Крика и Уотсона найти решение в трехспиральном варианте. А на это был потрачен целый год. Лишь после многолетних проб Уотсону пришла в голову мысль: а может быть, спиралей не три, а две? Проба двойной спирали почти немедленно увенчалась успехом. Модель получилась изящной, естественной и включала в себя важные открытия других исследователей, а именно данных Франклин о том, как расположены фосфатные группы и замечания Доногю о том, какая связь между аденином и тимином является наиболее подходящей. Просто невозможно было допустить ошибку: уж очень «хорошо» и притом единственным способом припасовывались друг к другу две тождественные цепочки, составляющие двойную спираль. Таким образом двойную спираль можно разодрать на части, но если предоставить двум цепочкам соединиться вновь, то они повторят в точности первоначальное взаимное расположение. Именно это обстоятельство и является ключом к пониманию процесса деления клетки и передачи наследственности. Достаточно представить себе, что в какой-то момент времени двойная спираль расщепляется на две совершенно тождественные цепи. Теперь каждая молекулярная цепь начинает работать как матрица, которая собирает на себе из окружающего сырья (фосфатные группы, сахарные группы, основания) точно такую же молекулу. Так можно понять образование двух молекул из одной, а значит, и механизм деления клетки. Репликация гена – так называют это явление. В 1962 году Джемс Уотсон вместе с Фрэнсисом Криком и Морисом Уилкинсом получили в полном согласии со своим уверенным ожиданием Нобелевскую премию в области медицины и физиологии за самое крупное открытие в области генетики, произошедшее со времен Менделя. Вскоре после этого Уотсон выпустил в свет книгу под названием «Двойная спираль», посвященную истории этого открытия, то есть событиям, разыгравшимся в течение 1951–1953 годов. Эта книга, изданная в 1968 году (русский перевод в 1969 году), имела большой успех. Она несколько недель фигурировала в списках бестселлеров наравне с самыми увлекательными модными романами. Успех объясняется тем, что книгу могут читать и лица, не разбирающиеся в структурной химии. Они могут пропускать странички, в которых ведется разговор о водородных связях и взаимодействии ионов, и читать с полным вниманием ту основную часть, которая с редкой непосредственностью и откровенностью описывает взаимоотношения между людьми, участвовавшими в этом открытии. Все участники пьесы (кроме одного) живы и здравствуют и могли бы также рассказать, как это все получилось. Однако вряд ли в ближайшее время кто-либо возьмется за перо для этой цели. Двойная спираль – геометрический образ молекулы ДНК – потеряла литературную невинность, и трудно соревноваться с Уотсоном, который пишет живо, образно, занимательно. Надо сказать, правда, что задача автора в изложении предмета исследования сильно облегчается идейной простотой научной проблемы. Поиск структуры молекулы ДНК, как мы уже говорили, заключался в увлекательнейшей игре с атомными моделями – шариками на проволочках, проволочками, скрепленными пружинками, или кусочками деревянных шариков, соединенных штифтами. Надо было собрать такую модель молекулы, которая объясняла бы имевшийся к тому времени довольно скудный эксперимент. Повесть о пробах и ошибках на этом пути умело чередуется с рассказом о различных путешествиях и встречах автора (как отчетливо видна из этой книги колоссальная катализирующая способность встреч и бесед ученых разных стран, разных профессий и разных наклонностей в развитии науки; до чего узко и близоруко то начальство, которое считает, что сотрудник должен находиться у своего лабораторного стола, не «болтаться» по конференциям и коллоквиумам, создаваемым непрестанно во всех уголках мира). Но, конечно, главная причина, которая помогла Уотсону создать из описания научного поиска увлекательное литературное произведение, состоит в том, что вместе с автором в книге действуют несколько ярких персонажей, сложные взаимоотношения между которыми имеют самую прямую связь с открытием структуры ДНК. Во-первых, далеко не просты отношения между Криком и Уотсоном, играющими «в шарики», и Морисом Уилкинсом и Розалиндой Франклин – работниками другого научного учреждения, – которые являются обладателями экспериментальных данных по ДНК. Опытные сведения необходимы нашим главным действующим лицам, опыт и только опыт может направить идеи по правильному руслу и помочь выбрать из сотен схем одну правильную. Но авторы эксперимента Морис и Рози сами хотят пожинать труды своих усилий. Не так-то интересно затратить годы труда, чтобы пара жонглеров атомами-шариками заслужила мировое признание. И другая острая психологическая ситуация под стать авантюрному роману. На другом берегу океана знаменитый Лайнус Полинг также трудится над созданием модели гена. И, казалось бы, преимущество должно быть на его стороне, так как совсем недавно он показал, что работой с атомными моделями можно существенно продвинуться в понимании структуры белков. Англичане не хотят отдать пальму первенства американцам. Итак, идет гонка за Нобелевской премией, ибо ясно, что успех в решении столь значительной задачи будет увенчан самым огромным лавровым венком. И эти два конфликта не исчерпывают ситуацию. Не гладкими поначалу являются взаимоотношения Крика с директором лаборатории сэром Лоуренсом Брэггом. Внедрение американского юноши в английский круг также требует некоторого приспосабливания. Науку делают люди, и их склонности и темперамент, стремления и принципы, входят в игру наряду с математическими формулами и физическими приборами. Вот это и удалось показать Уотсону в своей книге. По заслугам… Ну а как же насчет роли случая в открытии структуры ДНК? Невелика эта роль. Если еще в открытии Рентгена и Лауэ поклонники «госпожи удачи» выловят несколько незначительных фактов, подчеркивающих роль случайных совпадений, то в исследовании Уотсона и Крика улов будет уж совсем ничтожным. Однако наш сюжет донельзя ярко показывает, что открытие – это не выигрыш автомобиля по лотерее. Действительно, личные достоинства владельца билета в выигрыше никакой роли не играют, это уж точно. Что же касается тех, на чью долю выпало счастье сделать крупное научное открытие, то они по праву заслужили свою славу. – С этим никто не спорит, – возразит мне читатель. – Но ведь имеются и другие достойные люди. То обстоятельство, что из сотни достойных судьба выбрала именно вот этого одного, – это уже прихоть случая. Почему открытие произошло в Англии и в начале пятидесятых годов? С таким же успехом оно могло произойти в другой стране и в другое время. Нет, категорически не согласен я с подобным мнением. Открытие структуры гена закономерно. Оно произошло в тот момент, к которому оно созрело, и в том месте, в котором на него обращали внимание. А что касается участников открытия, то их выбор был практически единственным. Судите сами, время – начало пятидесятых годов, можно ли было за десять лет до этого срока сколько-нибудь серьезно думать, что закономерности в строении вещества могут быть продемонстрированы в масштабе один к ста миллионам с помощью деревянных, металлических или пластмассовых моделек? Конечно, нет. Ведь о плотной упаковке молекул в кристаллах и компактной структуре макромолекулы люди узнали лишь в 1945–1948 годах, и только в самом конце сороковых годов Полинг доказывает эвристичность работы с моделями для сложных биологических систем на примере альфа-спирали белка. Но этого мало. Вряд ли кто-либо рискнул взяться за возню с шариками и стерженьками, если бы не была видна возможность проверки найденной модели. А ведь только в сороковых годах были получены первые рентгенограммы ДНК; теоретические же расчеты, показывающие возможность нахождения параметров спиралей по рентгенограммам, были начаты лишь за несколько лет до работы Уотсона и Крика. Так же точно и важнейшие химические находки, позволившие уверенно наметить порядок присоединения различных химических групп, образующих ДНК, были сделаны также в последние десятилетия. И наконец, лишь к этому времени стала крепнуть уверенность в том, что явления наследственности связаны с молекулой ДНК. Все эти линии исследований пересеклись только к пятидесятому году. Открытие не могло быть сделано раньше, а интерес к проблеме был настолько значительным, что было бы невероятным также, если бы оно задержалось. Не случайно, что открытие было сделано в Англии. Именно здесь вполне естественно произошла встреча биолога Уотсона с нужным ему физиком. Но почему этим физиком оказался именно Крик? Прочтите внимательно книгу Уотсона, и вы поймете, что Крик был одним из трех-четырех возможных претендентов на будущую Нобелевскую премию. А может быть, даже и единственный, если поставить вопрос так: кто в это время в Англии проявлял одинаковый интерес к структуре биологических веществ и к теории рентгеноструктурного анализа? Выходит, что выбор Уотсоном подходящего коллеги был крайне ограниченным. Ну а почему Уотсон? На этот вопрос, пожалуй, трудно ответить. Ясно лишь одно – к пятидесятым годам неминуемо должен был найтись биолог, удовлетворяющий трем требованиям: талантливость (не стоит определять, что это такое, чтобы не завязнуть в понятиях), интерес к молекулярной природе гена и понимание, что один в поле не воин и что для решения проблем молекулярной биологии надо найти коллегу в стране физиков. Этим требованиям удовлетворял Уотсон. Можно ли по этой причине назвать его баловнем судьбы? Конечно, нет. Своим успехом он обязан своим разуму и нервной системе… Мы попытались ответить на вопрос, почему структуру гена открыли Уотсон и Крик. Можно попробовать объяснить, почему изобранником судьбы не стал Полинг или кто-нибудь еще. Как говорилось, Полинг искал ответ на вопрос о структуре гена одновременно с будущими победителями. Мне кажется, что он был слишком самонадеян в этом поиске. Успех с альфа-спиралью в белках заставил его думать, что он сумеет найти ответ, лишь играя с моделями. Полинг не был связан с экспериментаторами, владевшими рентгенограммами нуклеиновых кислот. В теории рентгеноструктурного анализа он не был опытен, а привлечь на помощь кого-либо из знатоков этой теории ему, видимо, не хотелось. За эти предположения профессор Лайнус Полинг, я надеюсь, не будет на меня в обиде. В конце концов это ему комплимент, так как он не сделал этого открытия, конечно, не из-за нехватки таланта. Так что, просмотрев все возможности, мы приходим к заключению, что открытие структуры гена так же, как, впрочем, и другие научные открытия, произошло тогда, когда оно должно было произойти, и было оно сделано теми людьми, которые больше всего заслуживали благосклонного отношения «госпожи удачи». Структура гена Написав название параграфа, я задумался, что делать дальше. Рассказать о структуре ДНК относительно несложно, но ведь у меня иная цель – объяснить читателю, каков атомный механизм формирования наследственных признаков. А посильная ли эта задача? Дорога от структуры ДНК даже к цвету глаз, не говоря уже к складу характера, очень длинная и тернистая. Местами она превращается в тропинку, а то и вовсе прерывается непроходимыми оврагами. О колоссальных успехах биологической физики за последние десятилетия я хорошо знал и тем не менее решил посоветоваться с узким специалистом, превосходно знающим молекулярную биологию. – Могу ли я пренебречь некоторыми деталями, неясностями, противоречиями и ограничиться изложением концепции «один ген – один фермент»? – спросил я его. – Положение не совсем так формулируется, – ответил он. – Сейчас говорят «один ген – одна полипептидная цепь». – Но можно мне не входить в эти детали? Принцип ведь мало меняется, а нашим читателям, мне думается, интересно знать лишь общую идею. – Пожалуй, можно, – согласился коллега. И я решил ограничиться ответом на небольшое число вопросов, которые мне кажутся важнейшими. Вопрос первый: в каком взаимоотношении находятся ген и молекула ДНК? Оказывается, ген – это не молекула. Ген – кусочек молекулы. Одна молекула содержит в себе множество генов, расположенных один за другим. Молекулы ДНК видны в электронный микроскоп и кажутся узенькими длинными палочками. Чтобы правильно представить себе соотношение длинны и ширины этой молекулы, вспомните железнодорожный рельс километровой длины. Как уже говорилось выше, молекула представляет собой линейный остов, к которому привешены в сумбурном порядке азотистые основания четырех типов: А, Г, Т и Ц. Так вот, один ген – это участок цепи ДНК, который состоит примерно из полутора тысяч этих оснований. Специфичность гена, то есть то, что этот ген имеет отношение к цвету глаз, а не к форме носа или что он человеческой особи, а не кошки, определяется порядком в расположении А, Г, Т и Ц. Можно сказать, что каждый ген характеризуется на молекулярном языке фразой, состоящей из полутора тысяч букв. А как определить, где кончается один ген и начинается другой? – спросите вы. Вопрос законный, и на него есть ответ. Так же как в азбуке Морзе, на четырехбуквенном языке азотистых оснований существует символ, соответствующий точке, которая отделяет один ген от другого. Вас может заинтересовать количество генов в одной ДНК. Считается, что их, вероятно, примерно десять тысяч; и каждая человеческая особь характеризуется десятью тысячами признаков. Но ведь на Земле живет около четырех миллиардов людей, а признаков всего лишь десять тысяч, как же быть с этим несоответствием? Число разных вариантов генных структур будет необозримо больше, чем четыре миллиарда (4·109). Действительно, если каждый ген может выступить в двух разновидностях (голубые глаза – карие глаза), то число этих структур будет равно 210000 по той же причине, по которой число вариантов распределения «красного» и «черного» в случае пяти рулеточных игр равно 232. Много ли это – два в степени десять тысяч? Порядочно. Так как два в десятой степени равно примерно одной тысяче, то есть десяти в кубе, то 210000 будет равно 103000 – единица с тремя тысячами нулей. А это число «чуточку» больше четырех миллиардов. Комментарии нужны? Пожалуй, нет. Теперь надо сказать несколько слов о работе гена и пояснить таинственную формулу «один ген – один фермент». Какая ткань в организме вырастет из клеток, определяется в первую очередь белковыми молекулами – ферментами, фабрикуемыми генами. Каждый ген создает одну определенную молекулу белка – один фермент. С помощью этого фермента и происходит строительство всего организма. При этом каждый фермент на редкость специализированный работник. Один фермент устанавливает, образно говоря, только стекло форточки, что на кухне, другой ответствен за электрический выключатель в столовой комнате, третий – за левый водопроводный кран. Но как он это делает? К сожалению, ответить на этот вопрос сейчас просто невозможно. Пришлось бы писать другую книгу, более профессиональную и более проблемную. А эту надо кончать. Мне остается сказать лишь несколько общих слов. Открытие структуры ДНК и механизма репликации гена явилось мощным толчком для развития молекулярной генетики. Множество явлений получило истолкование на молекулярном уровне, ряд фактов был успешно предсказан. Не надо, конечно, представлять себе, что с этим открытием внесена уже достаточная ясность в понимание всех жизненных процессов. Напротив, надо честно признаться, что в этом направлении сделаны лишь первые шаги. Тем не менее важность открытия Уотсона и Крика огромна уже хотя бы потому, что для всех естествоиспытателей стала очевидной справедливость интерпретации жизни на молекулярном уровне и, следовательно, возникла уверенность в принципиальной возможности вмешательства химическими и биохимическими методами в формирование потомства. Когда человечество приступит к этой задаче, грандиозность которой заставляет ежиться, и приступит ли к ее выполнению вообще, сказать трудно. Но в то же время вся история развития науки показывает, что науку не остановишь. А это означает, что, как только будет изучено устройство молекулы ДНК и установлен порядок следования оснований в молекуле конкретной особи (пока что нет такого способа), на повестку дня станет вопрос о подправке структуры молекулы ДНК. Но дальше простирается область предположений. Авторы фантастических романов уже достаточно наэксплуатировали сюжет создания новых животных и нового человека, поэтому не стоит лишать их возможности стяжать новые лавры и самое время поставить точку. Итак… Мой гость Александр Саввич сидел в кресле, попыхивал трубкой и наблюдал за тем, как я тружусь. Я правил свою рукопись. Работа шла к концу. – О чем речь на последних страницах? – О структуре гена. – Какое же отношение это имеет к теме книги? – Я рассказал о случайностях в наследовании признаков. Надо же было показать, как это замечательное явление объясняется атомной структурой живого вещества. – А по-моему, это задача другой книги. – Скажи на милость, какой поборник линейности сюжета! Это тебе не детектив. – Стройная сюжетная линия всегда считалась достоинством любого литературного произведения, – назидательно сказал Александр Саввич. – Не знаю, где это считалось. Посмотри любой классический роман, и ты увидишь, что сюжет всегда смахивает на ветвистое дерево: есть главная линия, но имеется и множество ответвлений. – Но если даже и так, то все боковые сюжеты должны служить одной цели. – Ну что ж, это справедливо. Именно так старался поступать и я. – Ничего ты не старался. Твоя тема – вероятность. – Да нет, не совсем так. Моя тема та же, что и в моих предыдущих популярных книгах, – научный метод мышления. Пропаганда этого метода, демонстрация его силы, попытка убедить читателя, что только с помощью этого метода можно трезво оценивать и жизнь общества, и свою собственную судьбу, – в этом я вижу их задачу. – Позволь, позволь, а название книги? – Ты не дал мне закончить. Я же не повторяюсь в своих книгах. В этой я решил показать читателю, как работает один важнейший элемент научного мышления – вероятностный подход к событиям. Это ствол дерева. Но если кое-где я уходил в сторону от сюжетной линии, то все же оставался в рамках главной задачи – показа могущества научного метода мышления. Мой друг молчал. Он листал рукопись, читал некоторые страницы. Я следил за выражением его лица – ведь он один из первых читателей! – стараясь поймать хоть крошечную похвалу. – Концовка нужна! – сказал Александр Саввич. – Нужна, – уныло согласился я. – А что писать? Повторить уже сказанное? – Чего сомневаешься? Можно подумать, что чтение научных диссертаций не является твоей повседневной работой. – При чем тут… – Диссертации заканчиваются выводами. Напиши выводы. Твои коллеги будут довольны. Поймут, что хоть ты и пытаешься заняться литературой, но все же свято хранишь привычки научного деятеля. – Гм… может, и правда попробовать. Выводы 1. Детальным рассмотрением в книге самых различных примеров, взятых из жизни и науки, показано, что почти всюду приходится сталкиваться со случайными событиями. 2. В ней дано новое (переставлен порядок слов и иначе расставлены знаки препинания) определение понятия случайного события. 3. Ярко показана польза от теории вероятностей для суждения о таких случайных явлениях, как автомобильные катастрофы, смерти и рождения, встречи и расставания. Основная мысль, обсуждаемая здесь, состоит в следующем: по мере увеличения числа повторяющихся случайных событий предсказания общего результата становятся все более достоверными, а при очень большом их числе случайности складываются в незыблемые закономерности. Автор вынужден отметить, что несколько другими словами эта мысль была ранее высказана в других романах, научных очерках и диссертациях. 4. Неоднократно подчеркивается огромная роль закона больших чисел. Практическое значение этого закона основывается на том, что мы живем в мире миллиардов молекул, миллиардов повторяющихся событий, миллиардов генов, миллиардов людей и животных. 5. В книге показана целесообразность введения количественных оценок в областях науки, трактующих о добре и красоте. Демонстрируется возможность и польза введения вероятностных подходов для решения некоторых проблем эстетики и этики. 6. Продемонстрировано… Александр Саввич смотрел через мое плечо, пока я отстукивал эти строки. – Хватит, – сказал он. – Становится скучно. Что еще есть в книге, читатель увидит по оглавлению, а ты лучше скажи мне следующее: каково воспитательное значение твоей книги? – На эту тему я размышлял. Вот мой ответ. Вероятностный подход к жизни воспитывает гражданские чувства. В том, чтобы вероятность автомобильной катастрофы была минимальной, в том, чтобы среднее число краж, происходящих за год, стремилось бы к нулю, в том, чтобы вероятность детской смертности неуклонно падала, я заинтересован как член общества. Небрежное отношение к этим достижениям как к чему-то, что меня не касается, есть проявление эгоцентризма, нежелательного в обществе. Вероятностный подход ко всем явлениям, происходящим в мире молекул и мире людей, приучает человека думать о себе не только как о неповторимом «я», но также как о члене общества, члене коллектива. Человек, лишенный этой мысли, чувствует себя безнадежно одиноким и потерянным в сложном мире. Человек иного воспитания, такой, который ощущает не только свое «я», но и свою принадлежность обществу, становится не простой единицей, а социальной единицей – умножает себя на сотни тысяч. И поэтому становится счастливее. Я пытался увидеть на лице друга одобрение. Если оно и было, он мне его не показал и лишь сказал: – Ты забыл, чем заканчиваются выводы. – Ах да. Автор считает своим приятным долгом выразить благодарность своему другу за полезную беседу, своему редактору за труд, в результате которого рукопись приобрела такой вид, а также будущим читателям за терпение и снисходительность. |
|
||||||||||||||||||||||||||||||
Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке |
||||||||||||||||||||||||||||||||
|