• 1. Общие понятия
  • 2. Призма
  • 3. Пирамида
  • 4. Косые сечения
  • Лекция № 9. Пересечение поверхности многогранника проецирующей плоскостью

    1. Общие понятия

    Если пересечь поверхность многогранника плоскостью, то в сечении получается многоугольник. Первая задача заключается в построении проекций многоугольника, получившегося в сечении, затем следует определить натуральный вид этого многоугольника. Также необходимо построить развертку поверхности данного многогранника, причем нужно указать на его поверхности след секущей плоскости.

    Построение проекций фигуры сечения можно выполнить двояко.

    1. Можно найти точки встречи ребер многогранника с секущей плоскостью, после чего соединить проекции найденных точек. В результате этого получатся проекции искомого многоугольника. В этом случае целью задачи является определение точек встречи нескольких прямых с данной плоскостью.

    2. Построение можно выполнить по-другому: последовательно найти линии пересечения каждой из граней многогранника с секущей плоскостью, тогда придется несколько раз строить линию пересечения двух плоскостей.

    Чтобы определить истинные размеры многоугольника, который получается в секущей плоскости, обычно поступают следующим образом: совмещают эту плоскость с плоскостью проекций.

    Плоская фигура, которая получается, если все грани вычертить в настоящую величину на плоскости чертежа в том порядке, в каком они следуют на самом многограннике, называется разверткой (или выкройкой) поверхности данного многогранника. Для ясности можно сказать, что поверхность многогранника как бы разрезается вдоль некоторых его ребер так, чтобы потом эту поверхность можно было совместить с плоскостью чертежа. В том случае если поверхность многогранника пересечена некоторой плоскостью, тогда для построения развертки на каждой грани следует изобразить след секущей плоскости.

    Построение развертки боковой поверхности многогранника осуществляется в два основных этапа:

    1) определением истинных размеров всех элементов каждой ее грани. Именно благодаря им можно построить изображение этой поверхности в натуральную величину;

    2) последовательное построение каждой грани в натуральную величину исходя из найденных раньше элементов.

    В случае если данная грань многогранника представляет собой треугольник, тогда, чтобы построить ее в натуральную величину, нужно просто знать размеры всех ее сторон. Если грань многогранника представляет собой четырехугольник, то, кроме четырех его сторон, следует знать еще какой-либо ее элемент (или один из углов, или диагональ и т. п.). В некоторых случаях вспомогательными линиями могут быть следы секущей плоскости.

    2. Призма

    На рисунке 95 показано пересечение поверхности прямой призмы фронтально-проецирующей плоскостью Р. Первым делом нужно рассмотреть проекции сечения. Ребра призмы перпендикулярны горизонтальной плоскости и проецируются на ней точками. Здесь горизонтальная проекция а точки А является пересечением ребра KK1 с плоскостью Р, она совпадает с проекцией k. Фронтальная проекция а располагается на следе Рv. Следовательно, горизонтальная проекция a?b?c? искомого сечения совпадает с проекцией основания klm. При этом фронтальная проекция аbс расположена на следе Рv. Если располагать двумя проекциями и сечениями, то нетрудно построить третью.

    Для определения истинных размеров треугольника ABC нужно совместить плоскость Р с горизонтальной плоскостью путем вращения около горизонтального следа Ph.

    Чтобы построить развертку, надо иметь все необходимые элементы на эпюре, основание проектируется без искажения на горизонтальную плоскость, а все ребра с точками пересечения – на фронтальную плоскость.

    Начинать построение развертки следует с ребра КК1, поместив его где-нибудь в стороне. На рисунке 96 показаны вспомогательные прямые, проведенные перпендикулярно ребру КК1. После этого от точки К вправо откладывается отрезок KL, равный стороне основания kl. Затем проводят второе ребро LL1, завершая построение натурального изображения грани KK1LL1. Далее справа от этой грани строят натуральное изображение следующей грани LL1M1M и продолжают до тех пор, пока не будет целиком построена развертка боковой поверхности призмы.

    После этих действий на всех ребрах отмечают точки А, В и С, откладывая на развертке KA = k?a?, LB = l?b? и МС = m?с?.


    Отметим, что на развертке отрезки АВ, ВС и СА имеют натуральные размераы сторон треугольника сечения, который показан на чертеже слева в натуральную величину (треугольник ABC). В связи с этим данные отрезки должны быть равны соответствующим сторонам треугольника. Проверкой точности построения является равенство этих отрезков на чертеже.

    Теперь осталось только пристроить к развертке боковой поверхности призмы верхнее и нижнее основания, т. е. два треугольника MKL и M1K1L1. При этом каждый из треугольников строится по трем сторонам.


    На рисунке 97 показано пересечение поверхности призмы горизонтально-проецирующей плоскостью Q. Здесь сечением является прямоугольник АА1В1В, одна пара сторон которого АВ и A1B1 проецируется без искажения на горизонтальную плоскость, а вторая пара AA1 и ВВ1 – на фронтальную и профильную плоскости.

    Пусть натуральные размеры обеих сторон прямоугольника АА1В1В даны, но в разных местах. Для построения прямоугольника в натуральную величину нужно через а и b провести прямые перпендикулярно q, затем наметить на них где-нибудь положение точек А и В (AB?aA). После этого откладываются от точек А к В на вспомогательных линиях натуральные размеры сторон АА1 и ВВ1, при этом их берут с фронтальной проекции.

    Строя натуральную величину сечения, мы как бы совместили прямоугольник с горизонтальной плоскостью, вращая его около горизонтального следа АВ (АВ = аb). После чего для удобства немного отодвинули это изображение от линии q.

    Построение натурального вида прямоугольника

    сечения весьма удобно делать слева от фронтальной проекции призмы (прямоугольник ABB1A1).

    3. Пирамида

    На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью P. Она определяется пересечением следа Pv с фронтальной проекцией ребра k?s? (рис. 98 а). Если фронтальная проекция а? точки А дана, то легко найти её горизонтальную проекцию а.


    На рисунке 98, б показаны натуральные размеры ABC сечения ABC, которые были определены совмещением его с горизонтальной плоскостью путем вращения около следа Ph. Отдельно на этом рисунке показаны элементы, которые необходимы для построения развертки. Натуральные размеры ребер пирамиды можно найти путём вращения их около оси, проходящей через вершину S перпендикулярно горизонтальной плоскости, как показано на рисунке 98 в. На рисунке 98 г показана развертка, а изображение каждого из треугольников, входящих в состав развертки, можно построить по трём его сторонам – ребрам.


    На рисунке 99 показано пересечение поверхности пирамиды горизонтально-проецирующей плоскостью Q. Треугольник ABC является сечением поверхности пирамиды плоскостью Q, основание АС которого проецируется на горизонтальную плоскость без искажения, а высота BD – на фронтальную и профильную плоскости.

    Чтобы построить натуральное изображение сечения, нужно провести через проекции а, с и d вспомогательные прямые, которые перпендикулярны Qh. После этого следует провести прямую АС параллельно Qh (AC?аА), точка D будет лежать на АС. Затем необходимо отложить от точки D на прямой Dd высоту треугольника (DB = d?b?). Это определит положение вершины В. Теперь треугольник ABC представляет собой натуральный вид сечения поверхности данной пирамиды плоскостью Q. Строить натуральный вид треугольника сечения весьма удобно слева от фронтальной проекции (треугольник ABC).

    4. Косые сечения

    Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленить рассматриваемое тело на элементарные геометрические тела, например призму, пирамиду, цилиндр, конус, шар и т. д. После чего следует строить натуральный вид искомого сечения, рассматривая последовательно пересечение плоскости с каждым из этих тел.

    На рисунке 100 показана правильная четырёхгранная пирамида с призматическим сквозным отверстием, которая пересечена фронтально-проецирующей плоскостью. Пусть требуется построить натуральное изображение сечения. Она представляет собой две равнобедренные трапеции ABCD и EFGH.

    На плане представлены размеры сторон параллельных оснований в натуральную величину, а расстояния между ними, которые являются высотами трапеций, – на главном виде. Для построения сечения этих данных достаточно. Построение выполняют в следующем порядке:

    1) проводят ось симметрии сечения параллельно фронтальному следу секущей плоскости, переносят на нее высоты упомянутых трапеций. С этой целью проводят через соответствующие точки следа секущей плоскости прямые, которые перпендикулярны этому следу;

    2) откладывают по обе стороны от оси симметрии половины натуральных размеров оснований трапеций:

    AD = ad, BC = bc и т. д.;

    3) соединяют построенные точки прямыми и заштриховывают полученные площади сечения.

    Также натуральный вид сечения можно наблюдать справа от горизонтальной проекции пирамиды (A1B1C1D1 и E1F1H1).


    Заметим, что точки D, С, Н и G лежат на одной прямой, так же как и точки F, Е, В и А на другой прямой. Эти прямые являются сечениями передней и задней граней, каждая из которых разрывается отверстием на две части (это важно при построении натурального вида сечения).


    На рисунке 101 показана пирамида, пересеченная горизонтально-проецирующей плоскостью. Пусть требуется построить натуральный вид сечения. Здесь прямую AF можно считать основанием многоугольника сечения, тогда построим это основание и от него будем откладывать высоты остальных вершин сечения. Следует поместить отрезок AF параллельно af, проводя прямые аА и fF перпендикулярно af (AF = af). Затем через горизонтальные проекции (b, с, d и е) остальных вершин многоугольника проводят прямые, перпендикулярные af. Потом откладывают на них по другую сторону от AF высоты перечисленных точек, основываясь на размерах главного вида. При этом отрезок DE должен быть параллельным AF.

    Представим, выполняя это построение, что мы как бы совместили сечение с горизонтальной плоскостью проекций, вращая его около горизонтального следа af секущей плоскости, после чего немного отодвинули его в направлении, перпендикулярном следу af.

    Также натуральный вид построен справа от фронтальной проекции (A1B1C1D1E1F1).

    При этом точки В, С, Е и F лежат на одной прямой.








    Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке