|
||||
|
6. Выбирая нашу Вселенную Согласно верованиям бошонго, племени из Центральной Африки, вначале была только тьма, вода, и великий Бог Бумба. Однажды Бумбу, мучающегося от желудочных колик, стошнило Солнцем. Спустя какое-то время Солнце испарило часть воды, образовав Землю. Но боль Бумбы не прекращалась, а с ней и тошнота. Её результатом стала Луна, звёзды и затем некоторые животные: леопард, крокодил, черепаха и, наконец, человек. Индейцы майя, населявшие Мексику и Центральную Америку похоже описывают время до творения, когда существовали лишь море, небо и Творец. В легендах майя Творец, будучи несчастлив от того, что его никто не славил, создал Землю, горы, деревья и большинство животных. Однако животные не могли говорить, и он решил создать людей. Поначалу он сделал их из грязи и земли, но они были способны лишь нести вздор. Он дал им исчезнуть и попробовал снова, в этот раз вырезав людей из дерева. Ну и тупыми же они оказались. Он решил уничтожить их, но они сбежали в лес, претерпев на этом пути травмы, слегка изменившие их, создав то, что нам сегодня известно как обезьяны. После этого провала Творец, наконец, нашёл работающую формулу и соорудил первых людей из белой и жёлтой кукурузы. Сегодня мы делаем этанол из зерна, но до сих пор не смогли превзойти Создателя людей, которые пьют его. Мифы о создании, подобные этим, пытаются ответить на вопросы, к которым мы обращаемся в этой книге: Почему существует Вселенная, почему она именно такая? Наша способность задаваться такими вопросами столетиями росла и укреплялась, начиная с древних греков, но наиболее глубоко — за прошлое столетие. Проведя подготовительную работу в предыдущих главах, мы теперь готовы предложить возможный ответ на эти вопросы. Одна идея, которая, возможно, была очевидна даже в прежние времена, состояла в том, что или Вселенная была сравнительно недавно создана, или люди, существуют только небольшой отрезок космической истории. Потому что человеческий род так быстро развивает знания и технологии, что, если бы люди существовали в течение миллионов лет, человеческий род намного бы продвинулся бы в своем совершенстве. Согласно Ветхому Завету, Бог создал Адама и Еву всего за шесть дней. Епископ Асшер, примас всей Ирландии с 1625 до 1656, указал происхождение мира еще более точно, в девять утра 27 октября, 4004 до н. э. Мы имеем другую точку зрения: что человечество возникло сравнительно недавно, а Вселенная существует много дольше — около 13.7 миллиардов лет. Первое фактическое научное доказательство, что у Вселенной было начало, появилось в 1920-х. Как мы сказали в Главе 3, было время, когда большинство ученых верило в статическую Вселенную, которая всегда существовала. Доказательства, правда, были косвенными, основанными на наблюдениях Эдвина Хаббла, сделанных с помощью 100-дюймового телескопа на горе Уилсона, на холмах выше Пасадены, Калифорния. Анализируя спектр света, который излучают галактики, Хаббл решил, что почти все галактики отдаляются от нас, и чем дальше они, тем быстрее они удаляются. В 1929 он открыл закон, связывающий падение интенсивности излучения галактик с их расстоянием от нас, и пришел к заключению, что Вселенная расширяется. Если это верно, то Вселенная, должно быть, была меньше в прошлом. Фактически, если мы экстраполируем к отдаленному прошлому, вся материя и энергия во Вселенной были бы сконцентрированы в очень крошечной области невообразимой плотности и температуры, и если бы мы вернулись достаточно далеко, когда все это началось, это событие, мы теперь называем Большим взрывом. Идея, что Вселенная расширяется, заключает в себе некоторую тонкость. Например, мы не подразумеваем, что Вселенная расширяется таким образом, что, скажем, можно было бы расширить дом, выбивая стену и помещая новую ванную, в том месте, где когда-то возвышался величественный дуб. Вернее сказать, что не пространство расширяет само себя, а то, что увеличивается расстояние между двумя любыми точками Вселенной, которая расширяется. Эта идея появилась в 1930-х среди многочисленных дискуссий, но одним из лучших способов наглядно продемонстрировать это, является метафора, изложенная в 1931 Кембриджским университетским астрономом Артуром Эддингтоном. Эддингтон представил Вселенную как поверхность расширяющегося воздушного шара, и все галактики как точки на его поверхности. Эта картина ясно иллюстрирует, почему далекие галактики разлетаются более быстро, чем соседние. Например, если радиус воздушного шара, удваивался каждый час, то расстояние между любыми двумя галактиками на воздушном шаре также удваивалось бы каждый час. Если бы в некоторое время две галактики были на расстоянии в 1 дюйм, то час спустя они были бы на расстоянии в 2 дюйма, и они, казалось бы, двигались бы друг относительно друга со скоростью 1 дюйма в час. Но если бы они начали на расстоянии в 2 дюйма, то час спустя они были бы отделены на 4 дюйма и, казалось бы, разбегались друг от друга со скоростью 2 дюйма в час. Вот, что обнаружил Хаббл: чем дальше галактика, тем быстрее она удаляется от нас. Важно понять, что расширение пространства не затрагивает размер материальных объектов, таких как галактики, звезды, яблоки, атомы, или другие объекты, скрепляемые некоторой силой. Например, если бы мы закрепили скопление галактик прочным кольцом на шаре, то это кольцо не расширялось бы, хотя шар продолжал бы расширяться. Это потому, что галактики связаны гравитационными силами, кольцо и галактики в пределах него сохраняли бы их размер и конфигурацию, тогда как шар увеличивался. Это важно, потому что мы можем обнаружить расширение, только если наши измерительные приборы имеют фиксированные размеры. Если бы все свободно расширялось, то мы, наши измерительные линейки, наши лаборатории, и так далее все расширились бы пропорционально, и мы не заметили бы различия. То, что Вселенная расширяется, было новостью для Эйнштейна. Но возможность, что галактики разлетаются друг от друга, была высказана за несколько лет до статей Хаббла на теоретической почве, являющейся результатом собственных уравнений Эйнштейна. В 1922 году российский физик и математик Александр Фридман исследовал то, что произойдет с моделью Вселенной, основанной на двух предположениях, которые очень упростили математику: он предположил, что, во-первых, Вселенная выглядит одинаково во всех направлениях и, во-вторых, из любой точки. Мы знаем, что первое предположение Фридмана не совсем верно — Вселенная, к счастью, не всюду однородна! Скажем, просто взглянув вверх, мы могли бы увидеть Солнце, а могли бы — и Луну. Или даже колонию летучих мышей. Но Вселенная, действительно кажется, примерно одинаковой в каждом направлении, когда рассматривается в масштабе, который намного больше — больше даже чем расстояние между галактиками. Это что-то вроде того, как наблюдать за лесом сверху. Если Вы находитесь достаточно близко, Вы сможете разобрать отдельные листья, или, по крайней мере, деревья, и пространства между ними. Но если Вы будете настолько высоко, что, если Вы протягиваете большой палец, и он покрывает квадратную милю деревьев, то лес, будет казаться однородным оттенком зеленого. Мы сказали бы, что в том масштабе лес однороден. Основываясь на своих предположениях, Фридман смог обнаружить решение в уравнениях Эйнштейна, при котором Вселенная расширялась, что Хаббл и подтвердил вскоре своими наблюдениями. В частности модель Вселенной Фридмана начинается с нулевого размера и расширяется до тех пор, пока гравитационное притяжение не замедлит расширение, и, в конечном счете, не заставляет ее снова схлопнуться в себя. (Есть, оказывается, два других типа решений уравнений Эйнштейна, которые также удовлетворяют предположениям о модели Фридмана, одно соответствует Вселенной, в которой расширение продолжается всегда, хотя и действительно замедляется немного, и другой Вселенной, в которой темп расширения замедляется к нолю, но никогда не достигает его). Фридман умер спустя несколько лет после своей этой работы, и его идеи оставались в значительной степени неизвестными, пока Хаббл их не подтвердил. Но в 1927 преподаватель физики и римско-католический священник по имени Джорджес Лемэйтр предложил подобную идею. Если Вы прослеживаете историю Вселенной назад в прошлое, она становится все более крошечной, пока Вы не наталкиваетесь на момент создания, который мы теперь называем Большим взрывом. Не всем понравилась картина Большого взрыва. Фактически, термин «Большой взрыв», который он назвал с некоторой иронией, был введен в 1949 Кембриджским астрофизиком Фредом Хойлом, который верил во Вселенную, которая расширяется всегда. Непосредственные наблюдения долго не могли подтвердить эту идею, пока в 1965 году не было открыто, что есть слабый фон сверхчастотных волн всюду во Вселенной. Это космическое микроволновое фоновое излучение (или реликтовое излучение), или CMBR, является тем же самым как и Вашей микроволновой печи, но намного менее сильным. Вы можете наблюдать реликтовое излучение самостоятельно, настраивая Ваше телевидение на неиспользованный канал — несколько процентов снега, который Вы видите на экране, будет вызван этим. Радиация была обнаружена случайно двумя учеными Bell Labs, пытающимися устранить такое помехи в их микроволновой антенне. Сначала они думали, что помехи могли произойти из-за голубей, усаживающихся на их антенну, но оказалось, что проблема имела очень интересную природу — реликтовое излучение — радиация, перенесенная от очень горячей и плотной ранней Вселенной, которая существовала вскоре после Большого взрыва. Поскольку Вселенная расширялась, она охлаждалась, пока радиация не стала только слабым остатком, который мы теперь наблюдаем. В настоящее время это реликтовое излучение могло бы нагреть Вашу еду до приблизительно -270 градусов по Цельсию, т. е только на 3 градуса выше абсолютного ноля, что не очень полезно для разогрева попкорна. Астрономы также нашли другие отпечатки, подтверждающие картину Большого взрыва горячей, крошечной ранней Вселенной. Например, в течение первой минуты или около того, Вселенная была более горячей, чем центр типичной звезды. Во время того периода вся Вселенная действовала как реактор ядерного синтеза. Реакции прекратились бы, когда Вселенная расширится и достаточно охладится, но теория предсказывает, что тогда Вселенную должна была бы состоять, главным образом, из водорода, но также приблизительно с 23 % гелия, с незначительным количеством лития (все более тяжелые элементы возникли позже в звездах). Расчеты находится в хорошем соответствии с количеством гелия, водорода, и лития, который мы наблюдаем. Наличие большого количества гелия и реликтовое излучение обеспечили убедительное доказательство в пользу картины Большого взрыва очень ранней Вселенной, но хотя можно думать о картине Большого взрыва как о действительном описании ранних времен, неправильно понимать Большой взрыв буквально, то есть считать теорию Эйнштейна как описание истинной картины происхождения Вселенной. Это потому что Общая теория относительности предсказывает, что должна была быть точка во времени, в которой температура, плотность, и искривление Вселенной были бесконечны, эта ситуацию математики называют сингулярностью. Для физиков это означает, что теория Эйнштейна прерывается в той точке и поэтому не может использоваться, чтобы предсказать, как Вселенная началась, только как она развивалась позже. Так как, хотя мы можем использовать уравнения Общей теории относительности и наши наблюдения за Вселенной, чтобы узнать о ней в очень молодом возрасте, не корректно полностью переносить картину Большого взрыва назад к началу. Мы скоро доберемся до проблемы происхождения Вселенной, но сначала нескольких слов о первой фазе расширения. Физики называют это раздуванием или инфляцией. Если бы Вы жили в Зимбабве, где инфляция валюты недавно превысила 200 000 000 процентов, термин, возможно, не показался вам очень уж надуманным. Но согласно даже скромным подсчетам, во время этой космологической инфляции, Вселенная, расширилась с коэффициентом 1000000000000000000000000000000 в 0,00000000000000000000000000000000001 секунду. Это было бы, как будто монета диаметром в 1 сантиметр внезапно увеличилась в десяти миллионов раз до размеров Млечного пути. Это, может показаться, нарушает теорию относительности, которая указывает, что ничто не может перемещаться быстрее чем свет, но это ограничение скорости не относится к расширению самого пространства. Идея, что такой эпизод инфляции, возможно, произошел, была впервые предложена в 1980 году, она основана на размышлениях, которые идут вне Общей теории относительности Эйнштейна и основываются на аспектах квантовой теории. Так как мы не имеем полной квантовой теории гравитации, детали все еще проясняются, и физики не уверены точно, как произошло расширение. Но согласно теории, расширение, вызванное инфляцией, не было бы абсолютно однородно, как предсказано традиционной картиной Большого взрыва. Эта неравномерность произвела бы крохотные отличия в температуре реликтового излучения в различных направлениях. Эти отличия являются слишком маленькими, чтобы их можно было наблюдать в 1960-х годах, но они были сначала обнаружены в 1992 спутником НАСА COBE, и позже измерены его преемником, спутником WMAP, запущенным в 2001 году. В результате мы теперь уверены, что инфляция действительно происходила. Как ни странно, хотя крошечные отличия в реликтовом излучении являются доказательством инфляции, одним из подтверждений инфляции является важная концепция, о том, что существует почти идеальная однородность температуры реликтового излучения. Если Вы нагреете одну область объекта, и затем подождете, то горячая область станет более прохладной, а вся остальная часть объекта — более теплой, пока температура всего объекта не выровняется. Точно так же можно было бы ожидать, что у Вселенной, в конечном счете, будет однородная температура. Но процесс этот занимает определенное время и если предположить, что инфляции не было, и скорость передачи тепла была бы ограничена скоростью света, то времени существования Вселенной просто не хватило бы чтобы уравнять температуры самых удаленных областей. Период очень быстрого расширения (намного быстрее, чем скорость света) устраняет это, потому что, возможно, было достаточно времени для уравнивания, чтобы произойти в чрезвычайно крошечной прединфляционной ранней Вселенной. Инфляция объясняет взрыв в Большом взрыве, по крайней мере в том смысле, что расширение, которое она представляет, было намного более значительным, чем расширение, предсказанное традиционной теорией Большого взрыва в теории общей относительности в течение временного интервала, в котором произошла инфляция. Проблема в том, что для того, чтобы наши теоретические модели инфляции работали, начальное состояние Вселенной должно было быть устроено очень специфическим и очень невероятным способом. Таким образом, традиционная теория инфляции решает одни проблемы, но создает другие — потребность в очень специфическом начальном состоянии. Эта проблема нулевого времени устранена в теории создания Вселенной, которую мы собираемся описать. Так как мы не можем описать создание, используя теорию общей относительности Эйнштейна, и если мы хотим описать происхождение Вселенной, общая теория относительности должна быть заменена более совершенной теорией. И все же необходимо иметь более совершенную теорию, ведь даже если бы общая теория относительности не потерпела неудачу, потому что она не принимает во внимание некоторые вопросы, которыми занимается квантовая теория. Мы упоминали в Главе 4, что для большинства практических вопросов квантовая теория не подходит для исследования крупномасштабных структур Вселенной, потому что квантовая теория применяется для описания природы на микроскопическом уровне. Но если Вы рассматриваете достаточно далекое время, когда Вселенная была столь же маленькой, как размер Планка, одна миллиард-триллион-триллионная часть сантиметра, который является масштабом, в котором действительно должна быть принята во внимание квантовая теория. Так, хотя у нас еще нет полной квантовой теории гравитации, мы действительно знаем, что происхождение Вселенной было квантовым случаем. И в результате, как мы объединили квантовую теорию и общую теорию относительности — по крайней мере условно — чтобы вывести теорию инфляции, то если мы хотим вернуться еще дальше во времени и понять происхождение Вселенной, мы должны объединить то, что мы знаем об общей теории относительности, с квантовой теорией. Чтобы видеть, как это работает, мы должны понять принцип, что гравитация деформирует пространство и время. Искривление пространства легче визуализировать, чем искривление времени. Представьте, что Вселенная — поверхность плоского бильярдного стола. Поверхность стола — плоское место, по крайней мере в двух измерениях. Если Вы будете катить шар по столу, то он будет двигаться по прямой линии. Но если стол станет деформированным или вдавленным в местах, как на иллюстрации ниже, то шар будет двигаться по кривой. Легко понять, как бильярдный стол деформирован в этом примере, потому что он изгибается во внешнее третье измерение, которое мы можем видеть. Так как мы не можем вознестись вне нашего собственного пространства-времени, чтобы рассмотреть его искривление, пространственно-временное искривление в нашей Вселенной более сложно представить. Но искривление может быть обнаружено, даже если Вы не можете подняться и рассмотреть его с другой перспективы. Это можно обнаружить изнутри самого пространства. Вообразите микромуравья, ограниченного поверхностью стола. Даже без способности подняться над столом, муравей мог бы обнаружить искривление, тщательно фиксируя расстояния. Например, расстояние вокруг круга в плоском месте — всегда немного больше чем в три раза расстояния через его диаметр (фактическое кратное числу — пи). Но если бы муравей перемещался по окружности, охватывающий лунку в столе, изображенном выше, он определил бы, что расстояние по лунке напрямик больше чем вокруг лунки. Фактически, если бы лунка была достаточно глубокой, то муравей определил бы, что расстояние по окружности короче, чем расстояние через лунку. То же самое верно для искривления в нашей Вселенной — оно удлиняет или сокращает расстояние между точками пространства, изменяя его геометрию или форму, и это можно измерить изнутри Вселенной. Деформация отрезков времени или сжатие временных интервалов подобного рода. Вооруженные этими идеями, давайте возвратимся к проблеме начала Вселенной. Мы можем говорить отдельно о пространстве и времени, которые мы рассматриваем, в ситуациях с низкими скоростями и слабой гравитацией. Вообще, однако, время и пространство могут стать взаимосвязанными, и, таким образом, их растяжение и сжатие также влекут определенного рода взаимодействия. Это взаимодействие важно в ранней Вселенной, и является ключом к пониманию начала времени. Проблема начала времени немного походит на проблему края мира. Когда люди думали, что мир был плоским, возможно, задавались вопросом, лилось ли море через его край. Это было проверено экспериментально: Любой может пропутешествовать вокруг земли и не упасть с нее. Проблема того, что случается на краю мира, была решена, когда люди поняли, что мир был не плоской пластиной, а кривой поверхностью. Время, однако, казалось, походило на модель железнодорожного полотна. Если оно имело начало, должно быть, был кто-то (то есть, Бог), чтобы организовать движение поездов. Хотя общая теория относительности Эйнштейна объединила время и пространство как пространство-время и определила взаимосвязь между пространством и временем, время все еще отличалось от пространства, и либо имело начало и конец, либо иначе продолжалось всегда. Однако, как только мы добавляем результаты квантовой теории к теории относительности, в крайних случаях искривление может произойти до такой большой степени, что время ведет себя как другое пространственное измерение. В ранней Вселенной — когда Вселенная была достаточно маленькой, чтобы подчиняться законам и общей теории относительности и квантовой теории — было, фактически, четыре пространственных измерения и ни одного временного. Это означает, что, когда мы говорим о «начале» Вселенной, мы выделяем тонкий аспект, что, поскольку мы рассматриваем очень раннюю Вселенную, время, как мы уже знаем, не существует! Мы должны признать, что наши обычные представления о пространстве и времени не относятся к очень ранней Вселенной. Это вне нашего опыта, но не вне нашего воображения, или нашей математики. Если в ранней Вселенной все четыре измерения ведут себя как пространственные, то как возникло время? Осознание того, что время может вести себя как другое измерение пространства, означает, что можно избавиться от проблемы времени, имея начало, подобным способом, которым мы избавились от края мира. Представьте, что начало Вселенной походило на Южный полюс земли, с градусами широты, играющими роль времени. При продвижении на север, круги постоянной широты, представляющие размер Вселенной, расширились бы. Вселенная началась бы как точка на Южном полюсе, но Южный полюс очень похож на любую другую точку. Спрашивать, что было перед началом Вселенной, станет бессмысленно, потому что нет ничего к югу от Южного полюса. В этой модели у пространства-времени нет никакой границы — те же самые законы природы выполняются как на Южном полюсе, так в других местах. Другими словами, когда мы объединяем общую теорию относительности с квантовой теорией, вопрос «что происходило до начала Вселенной?» теряет смысл. Эту идею, что события должны были быть закрыты поверхностями без границы, называют неграничным условием. Долгое время многие, включая Аристотеля, полагали, что Вселенная, должно быть, всегда существовала, чтобы избежать проблемы того, как она возникла. Другие полагали, что Вселенная имела начало, и использовала это как аргумент за существование Бога. Осмысление, что время ведет себя как место, представляет новую альтернативу. Это устраняет старое возражение, что Вселенная имеет начало, но также и означает, что возникновение Вселенной соответствует научным законам, и нет необходимости использовать понятие Бога. Если начало Вселенной было квантовым событием, оно могло бы быть точно описано совокупностью событий Фейнмана. Применять квантовую теорию ко всей Вселенной, где наблюдатели — часть наблюдаемой системы, является сложным, как бы то ни было. В Главе 4 мы видели, как материальные частицы направлялись в экран с двумя прорезями в нем, что могло быть доказательством принципа интерференции, как и у частиц волны воды. Фейнман показал, что это возникает, потому что у частицы нет однозначно определенных событий. Таким образом, поскольку частица перемещается от своей отправной точки А к некоторой конечной точке B, она не выбирает один определенный путь, а скорее одновременно выбирает каждый возможный путь, соединяющий два пункта. С этой точки зрения, интерференция не удивительна, потому что, например, частица может переместиться через обе прорези в то же самое время и пересечься сама с собой. Применяя к движению частицы, метод Фейнмана говорит нам, что, чтобы вычислить вероятность любой отдельной конечной точки, мы должны рассмотреть все возможные события, которые могли произойти, когда частица следовала из своей отправной точки к той конечной точке. Можно также использовать методы Фейнмана, чтобы вычислить квантовые вероятности для наблюдений за Вселенной. Если они применены к Вселенной в целом, не существует точки A, таким образом, мы складываем все события, которые удовлетворяют неграничному условию и оканчиваются во Вселенной, которую мы наблюдаем сегодня. В этом представлении Вселенная появилась спонтанно, возникая одним из равновероятных способов. Большинство из них соответствует другим вселенным. В то время как некоторые из тех вселенных подобны нашей, большинство совсем другие. Они не только различны в деталях, таких как, умер ли Элвис действительно молодым или является ли турнепс десертной пищей, а скорее они отличаются даже по их истинным законам природы. Фактически, существует много вселенных со многими различными наборами физических законов. Некоторые люди создают большое таинство из этой идеи, иногда называемой понятием мультивселенная, но они — только различные выражения совокупности событий Фейнмана. Чтобы изобразить это, давайте изменим аналогию воздушного шара Эддингтона, и вместо этого давайте думать о расширяющейся Вселенной как о поверхности пузыря. Наша картина самопроизвольного квантового создания Вселенной тогда немного походит на формирование пузырей пара в кипящей воде. Много маленьких пузырьков появляется и затем снова исчезают. Они представляют минивселенные, которые расширяются, но затем коллапсируют до микроскопического размера. Они представляют возможные альтернативные вселенные, но они не очень интересны, так как они не существуют достаточно долго, чтобы развились галактики и звезды, чтобы развилась хотя бы одна разумная жизнь. Несколько маленьких пузырей, однако, вырастут достаточно крупными, чтобы можно было избежать повторного коллапса. Они будут продолжать расширяться в размере и формировать пузыри, которые мы можем видеть. Они соответствуют вселенным, которые начинают расширение в размере, другими словами, вселенные находятся в состоянии инфляции. Как мы говорили, расширение, вызванное инфляцией, не будет полностью однородно. В совокупности событий существует только одно полностью однородное и регулярное событие, и ему выпадет редкая возможность, но многие другие события, которые немного нерегулярны также будут иметь эту возможность с высокими шансами. Вот почему инфляция предсказывает, что ранняя Вселенная, вероятно, слегка неоднородна, в соответствие с небольшими расхождениями в температуре, которое наблюдалось в реликтовом излучении. Удачей для нас является, что ранняя Вселенная была нерегулярной. Почему? Однородность хороша, если вы не хотите отделения сливок от вашего молока, но однородная Вселенная — скучная Вселенная. Неравномерности в ранней Вселенной важны, потому что, если некоторые области имели немногую большую плотность, чем другие, гравитационное притяжение этой большей плотности замедлило бы расширение этого области, относительно его окружения. Так как сила гравитации медленно собирает материю вместе, это может в конечном счете привести к ее коллапсу, с последующим формированием галактик и звезд, которые могут породить планеты и, по меньшей мере в одном случае, людей. Взгляните внимательно на карту микроволнового неба. Это копия всей структуры Вселенной. Мы — продукт квантовых флуктуаций (колебаний) в очень ранней Вселенной. Кто-то религиозный мог бы сказать, что Бог действительно играет в кости. Эта идея приводит к взгляду на Вселенную, которая совершенно отлична от традиционного представления, и требует, чтобы мы определились, что мы думаем об истории Вселенной. Для того чтобы сделать предсказания в космологии, нам нужно вычислить вероятности различных состояний всей Вселенной в настоящем времени. В физике обычно предполагают некоторое начальное состояние для системы и экстраполируют ее вперед во времени, используя релевантные математические уравнения. Взяв состояние системы в определенное время, стараются вычислить вероятность того, что система будет находиться в некотором отличном состоянии в будущем. Обычным предположением в космологии является то, что Вселенная имеет единственную определенную историю. Можно, используя законы физики, вычислить, как это состояние развивается со временем. В космологии мы называем этот подход «bottom-up» (снизу вверх). Но с тех пор, как мы принимаем в расчет квантовую природу Вселенной, выраженную совокупностью событий Фейнмана, вероятность, что Вселенная находится сейчас в определенном состоянии, увеличивается в соответствие с учетом всех событий, которые удовлетворяют не пограничному условию и конечному состоянию, вызывает сомнение. В космологии, другими словами, нельзя следовать за историей Вселенной снизу вверх, потому что предполагается, что есть единственная развитие событий, с четкой отправной точкой и эволюцией. Вместо этого нужно проследить события с верху вниз, назад от настоящего времени. Некоторые события будут более вероятными, чем другие, и эта совокупность, как правило, будет поглощена единственной историей, которая начинается с создания Вселенной и достигает высшей точки в состоянии рассмотрения. Но будут различные истории для различных возможных состояний Вселенной в настоящее время. Это приводит к радикально отличному представлению космологии, и связи между причиной и следствием. События, которые принадлежат совокупности Фейнмана, не имеют независимого существования, но зависят от того, что измеряется. Мы создаем историю нашим наблюдением, а не историю, создающую нас. Идея, что у Вселенной нет уникальной независимой от наблюдателя истории, могло, кажется, находиться в противоречии с определенными фактами, которые мы знаем. Могла бы быть одна история, в которой Луна сделана из сыра Рокфора. Но мы заметили, что Луна не сделана из сыра, что является дурными вестями для мышей. Следовательно, истории, в которых Луна сделана из сыра, не соответствуют текущему состоянию нашей Вселенной, хотя они могли бы соответствовать другим. Это могло бы походить на научную фантастику, но это не так. Важным следствием нисходящего подхода является то, что естественные законы природы зависят от истории Вселенной. Многие ученые верят, что существует единая теория, которая объясняет эти законы так же как и физические константы природы, такие как масса электрона или размерность пространства-времени. Но нисходящая космология диктует, что естественные законы природы, различны для различных историй. Рассмотрите естественную размерность Вселенной. Согласно М-теории, у пространства-времени есть десять пространственных измерений и одно измерение — время. Идея состоит в том, что семь пространственных измерений настолько сильно искривлены, что мы не замечаем их, оставаясь с иллюзией, что все, что существует, является тремя оставшимися масштабными измерениями, с которыми мы знакомы. Один из центральных нерешенных вопросов в М-теории это: Почему в нашей Вселенной, не существует больше масштабных измерений, и почему какие-то измерения свернуты? Многим людям хотелось бы полагать, что есть некоторый механизм, который заставляет все кроме трех пространственных измерений сворачиваться спонтанно. Альтернативно, возможно в начале все измерения были маленькими, но по некоторой понятной причине расширились три пространственных измерения, а остальные нет. Кажется, однако, что нет никакой динамической причины для Вселенной, чтобы быть четырехмерной. Вместо этого нисходящая космология предсказывает, что число масштабных пространственных измерений не установлено никаким принципом физики. Существует квантовая вероятность для каждого числа масштабных пространственных измерений от ноля до десять. Совокупность Фейнмана допускает все из них для каждой возможной истории Вселенной, но наблюдение, что у нашей Вселенной есть три масштабных пространственных измерения, выбирает подкласс историй, у которых есть свойства, которые можно наблюдать. Другими словами, квантовая вероятность, что Вселенная имеет больше или меньше чем три масштабных пространственных измерений, является нерелевантной, потому что мы уже определили, что мы находимся во Вселенной с тремя масштабными пространственными измерениями. Пока вероятность для трех масштабных пространственных измерений больше ноля, не имеет значения, насколько она мала по сравнению с вероятностью для другого числа измерений. Это похоже на вероятность, что действующий папа римский — китаец. Мы знаем, что он немец, даже при том, что вероятность, что он — китаец, выше, потому больше китайцев, чем немцев. Точно так же мы знаем, что наша Вселенная проявляет три измерения, и так, даже при том, что другое число измерений может иметь большую вероятность, нам интересна только историями с тремя. Что относительно свернутых измерений? Вспомните, что в М-теории точная форма остальных свернутых измерений, внутреннее пространство, определяют и значения физических величин, таких как заряд электрона и природу взаимодействия между элементарными частицами, то есть, силы природы. Было бы ясно, если бы М-теория позволила только одно состояние для свернутых измерений, или возможно несколько или все, но одно из которых, возможно, было исключено некоторыми средствами, оставляя нас только с одной возможностью для наблюдаемых законов природы. Вместо этого есть вероятности для, возможно, целых 10 в степени 500 различных внутренних пространств, каждое из которых приводит к различным законам и значениям для физических констант. Если Вы воссоздаете историю Вселенной снизу вверх, нет никакой причины, что Вселенная должна закончиться с внутренним пространством для взаимодействий частицы, которые мы фактически наблюдаем, стандартная модель (взаимодействие элементарных частицы). Но при нисходящем подходе мы признаем, что вселенные существуют со всеми возможными внутренними пространствами. В некоторых вселенных электроны имеют вес мячей для гольфа и сила гравитации сильнее, чем то магнетизм. У нас применяется стандартная модель, со всеми ее параметрами. Можно рассчитать амплитуду вероятности для внутреннего пространства, которая приводит к стандартной модели исходя из безграничных условий. Как с вероятностью того, что у Вселенной есть три масштабных пространственных измерения, не имеет значения, насколько мала эта амплитуда относительно других возможностей, потому что мы уже заметили, что стандартная модель описывает нашу Вселенную. Теория, которую мы описываем в этой главе, может быть проверена на практике. В предшествующих примерах мы подчеркнули, что относительные амплитуды вероятности для радикально различных вселенных, таких как те, у которых число масштабных пространственных измерений различно, не имеют значения. Относительные амплитуды вероятности для граничащих (то есть, подобных) вселенных, однако, важны. Безграничные условия подразумевают, что амплитуда вероятности наиболее высока для историй, в которых Вселенная начинается совершенно однородной. Амплитуда уменьшается для вселенных, которые более неравномерны. Это означает, что ранняя Вселенная была бы почти однородной, но с маленькими неравномерностями. Как мы отметили, мы можем наблюдать эти неравномерности в виде маленькие вариаций в микроволнах, исходящих из различных направлений в небе. Как обнаружилось, они полностью согласуются с главными требованиями теории инфляции; однако более точные измерения необходимы, чтобы полностью дифференцировать нисходящую теорию от других, и либо подтвердить ее, либо опровергнуть. Они могут хорошо быть выполнены в будущем с помощью спутников. Сотни лет назад люди думали, что Земля уникальна и расположена в центре Вселенной. Сегодня мы знаем, что существуют сотни миллиардов звезд в нашей галактике, большой их процент с планетарными системами, и сотни миллиардов галактик. Результаты, описанные в этой главе, указывают, что сама наша Вселенная — также одна из многих, и что ее наблюдаемые законы не определены однозначно. Это должно быть неутешительно для тех, кто надеялся, что окончательная теория, теория всего, предскажет природу повседневной физики. Мы не можем предсказать дискретные особенности, такие как число масштабных пространственных измерений или внутренних пространств, определяющих физические параметры, которые мы наблюдаем (например, массу и заряд электрона и других элементарных частиц). Скорее мы используем эти цифры, чтобы выбрать, какие истории вносят вклад в сумму Фейнмана. Мы, кажется, живем в критический момент в истории науки, в котором мы должны изменить свою концепцию задач и того, что делает физическую теорию приемлемой. Похоже, что фундаментальные параметры и даже форма наблюдаемых законов природы не обусловлены логическим или физическим принципом. Параметры могут принимать множество значений, а законы принимать любую форму, которая приводит к самосогласованной математической теории, и они действительно принимают различные значения и различные формы в различных вселенных. Это, вероятно, не удовлетворяет нашему человеческому желанию быть особенным или обнаружить аккуратный пакет, содержащий все законы физики, но это, кажется, действительно особенность природы. Похоже, есть бескрайний пейзаж возможных вселенных. Однако, как мы увидим в следующей главе, вселенные, в которых может существовать жизнь подобно нашей, редки. Мы живем в той, в которой жизнь возможна, но если бы Вселенная была всего лишь немного отлична, то существа, как мы, не могли бы существовать. Как можно расценивать эту точную настройку? Является ли это свидетельством того, что Вселенная все-таки была спроектирована благосклонным создателем? Или наука предлагает другое объяснение? |
|
||
Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке |
||||
|