|
||||
|
Современное естествознание Особенности науки XX века Скажем вначале несколько слов об уже обратившем на себя, вероятно, внимание читателя фактическом ограничении круга научных дисциплин, привлеченных нами к анализу воздействия науки на развитие философии. Здесь по преимуществу говорится о физике и о ее воздействии на другие дисциплины и отрасли знания. Общая картина современной науки может быть результатом ее анализа с различных точек зрения. Среди них имеет право на существование и анализ воздействия современной физики на познание в целом. Основа такого подхода – в особом, характерном для нашего времени, места физики в общей системе развивающегося знания. Это, конечно, не единственный аспект; для современной науки весьма характерно и то, что можно назвать гуманитаризацией, – возрастание удельного веса общественных проблем и растущее воздействие разработки общественно-научных проблем на естествознание. Однако и преимущественное внимание в данной книге к естественнонаучным и даже еще уже – физическим проблемам не лишает анализ общенаучного значения и права говорить о взаимосвязи науки и философии. Роль физики в современной науке не похожа на роль механики в XVII-XVIII веках, когда механические законы претендовали на место того носителя космической гармонии, к которому в последнем счете сводятся все закономерности бытия. Но физика занимает в современной науке совсем иное место и по сравнению с XIX веком. Тогда физика противостояла диктатуре механики и, подобно другим дисциплинам, утверждала несводимость и специфичность своих законов. Сейчас она объединяет микромир и мегамир и в этом смысле, не покушаясь на специфичность других дисциплин, создает неклассическое представление о иерархии бытия, в которой Метагалактика сближается с элементарными частицами. Генезис такой, неизвестной прошлому, картины мира имеет важное значение для выяснения связи науки и философии. Подобная связь в определенной степени является импульсом и вместе с тем результатом распространения понятий современной физики на другие отрасли знания. Такой процесс можно наблюдать, например в биологии, которую иногда считают преемницей физики, сменяющей ее на посту лидера науки. Если подобная перспектива в каком-то смысле реальна, то она совсем не означает вторжения биологических понятий, закономерностей и методов в физику. Вместе с тем указанная перспектива в основном связана с развитием молекулярной биологии, которая гораздо ближе в своих тенденциях и прогнозах к квантовой физике, чем к классической макроскопической биологии. Молекулярная биология – пример очень общей тенденции современной науки, тенденции, которую можно было бы назвать физи-кализацией науки, правда с одним существенным уточнением: такое название целиком относится к неклассической физике. К этому следует добавить, что физикали-зация означает явное устранение из научной картины мира каких бы то ни было неизменных, априорных сущностей, ибо современная физика, объединившая космос и микрокосм, не оставляет ничего, что могло бы считаться «зафизической» (шире – «занаучной») сущностью мира. Никогда еще так ясно, как в современной науке, не было продемонстрировано, что субстанция неотделима от своих проявлений. Следует подчеркнуть, что характеристика современной физики может быть лишь детализацией и демонстрацией эволюции общих особенностей науки XX века. Такие более общие особенности являются особенностями неклассической науки в отличие от классической. Но ответ на вопрос: «Что такое наука XX века?» – включает и другое – определение зависимости самого периода истории от состояния науки. Уже в XVII-XVIII веках эта зависимость была явной, а в XIX веке она стала в значительной мере определяющей. В 1886 году на чествовании французского химика-органика М. Шевреля (ему исполнилось сто лет) К. А. Тимирязев сказал юбиляру: «Дитя века разума, Вы – живое воплощение века науки». Действительно, век разума, XVIII век, был периодом, когда идеи великих рационалистов предыдущего столетия приобрели историческое бытие и стали оказывать решающее воздействие на реальные судьбы людей. В этом столетии английская промышленная революция превратила рациональную схему мироздания – классическую механику в научную основу машинной индустрии. В этом же столетии плеяда великих мыслителей-рационалистов привлекла к суду отвлеченного разума все общественные институты, и вскоре Великая французская революция исполнила его приговор. В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями. Наука в этот период знала о подвижности своего русла, о его поворотах. Представления о таких поворотах были обобщены в диалектической философии. Но повороты были более или менее спорадическими. Они позволяли науке забывать о них в течение долгих периодов сравнительно спокойного развития. И, что самое главное, они не оказывали быстрого и непосредственного воздействия на жизнь людей. Наука в течение десятилетий как бы отдыхала от каждого потрясения, спокойно развивая новые принципы, которые снова, как и прежние, уже ушедшие в прошлое, казались непоколебимыми. Результаты науки приобретали ореол очевидности, и стиль научного мышления в целом не был парадоксальным. В той или иной мере парадоксы всегда были свойственны науке. В свое время мысль об антиподах, живущих на другой стороне Земли, на «нижней» ее стороне, и не падающих «вниз», была невероятно парадоксальна. Парадоксальными были представления о движении Земли, об изменении видов живых существ. Но старые парадоксы исчезали, они растворялись в научном знании, претендовавшем на очевидную правильность. XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять. Сейчас, почти столетие спустя, подобные парадоксы должны были стать трюизмами. Этого не случилось. Парадоксы квантовой теории и теории относительности переставали быть парадоксами только при переходе науки к еще более парадоксальным утверждениям. Началась цепная реакция парадоксов. Вскоре после Планка выяснялось, что свет не просто излучается порциями, но и состоит из частиц – квантов света, фотонов. А представление о неизменной скорости света привело к еще более парадоксальным утверждениям об изменении массы тела в зависимости от скорости его движения, о возможности освобождения очень большого количества энергии при уменьшении массы тела, о превращении частиц с ненулевой массой покоя в излучение, в частицы с нулевой массой покоя, о кривизне пространства, о расширяющейся Вселенной. Цепная реакция парадоксов оказала большое влияние не только на стиль научного мышления, но и на бытие людей, на технику, на производство, на цивилизацию в целом. В науке XIX века марши сменялись привалами. Антракты были длительнее, чем сами акты. Теперь пьеса идет без антрактов, повороты науки настолько радикальны, что их воздействие продолжается долго, причем не замедляется, не затухает, а ведет к новым, еще более парадоксальным утверждениям. Для науки XX века характерен безостановочный марш. Соответственно изменилось понятие великого открытия. Раньше величие научного открытия измерялось длительностью сохранения его фундаментальной роли. Великим открытием считали результат эксперимента или обобщение, приводившее к новой научной теории, надолго, быть может, навсегда, сохранившей неизменной свою классическую форму и служившей фундаментом для столь же прочных выводов. Сейчас величие открытия измеряется его динамическим воздействием на науку, радикальностью и общностью его резонанса, вызванных им дальнейших открытий, дополняющих, модифицирующих и изменяющих его. Рассказать о таких великих, фундаментальных открытиях – значит рассказать об их резонансе. В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований. В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации. Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых, уже в начале века во много раз превзошедшие темпы роста числа представителей остальных профессий. Если так пойдет и дальше, то число ученых превысит число остальных людей на Земле. Может быть, это будут кибернетические роботы? Такой прогноз оставим авторам фантастических романов о будущем. Впрочем, наверное, и они не воспользуются им. Кибернетика не заменяет человека комбинацией электронных приборов, а вооружает его и позволяет ему сосредоточиться на наиболее достойной человека деятельности, на творчестве, на все более глубоком познании природы, на все более разумном подчинении природы целям человека. Но, может быть, необычайно быстрый рост научных кадров отражает начальный этап современной эволюции науки и впоследствии число ученых будет расти медленнее. По-видимому, в течение оставшихся лет XX века и в следующем столетии будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино. В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности. Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц. Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе. Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу. Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии». И действительно, разве не атомная энергия дала человеку новую энергетическую базу производства и разве не ее открытие явилось вместе с тем открытием еще более мощной силы – силы ассоциированной науки? Разве не атомная энергия внушила человечеству самые радужные надежды и самые тяжелые опасения? А космические исследования, выход человека за пределы земной атмосферы – разве это великое событие мировой истории не характеризует наше столетие? А кибернетика? Ведь это она существенно влияет на характер труда, производства. Среди всех эпитетов нашего века, характеризующих специфику его науки, «век биологии» кажется особенно показательным. В середине столетия физиология, химия, физика, математика объединились, чтобы раскрыть загадку живого вещества и жизни. Если макроскопическое решение этой загадки в XIX веке позволило говорить о «веке Дарвина», то ее микроскопическое решение – картина молекулы живого вещества и закодированной в ней наследственности организма – дает право назвать наше столетие веком молекулярной биологии и ее неисчерпаемых результатов в генетике, медицине и т. д. Но каждый из претендентов на обобщающее название века все же кажется недостаточным. И не потому, что наряду с атомной энергетикой выросли кибернетика, молекулярная биология, космические исследования. Перечисленных названий недостаточно потому, что между всеми отмеченными в них тенденциями существует глубокая связь и по исходным теоретическим позициям и экспериментальным данным, и по стилю научного мышления, и по экономическому и культурному эффекту. Забегая вперед, ограничимся кратким замечанием об общем эффекте науки XX века, характерном для всех отраслей производства, для культуры и стиля мышления. Этот эффект – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки. Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс. В «Рассуждениях о науках и искусствах» Ж. Ж. Руссо вспоминал о пришедшей из Египта в Древнюю Грецию легенде о боге, создавшем науку. Этот бог, говорит легенда, был врагом человеческого спокойствия. Различие между наукой XX и XIX веков состоит в том, что старая наука не так явно и не так непрерывно «беспокоила» человечество, не так явно демонстрировала враждебную человеческому спокойствию тенденцию своего легендарного создателя. Динамизм науки в XX веке отчетливо виден, если сравнить то, что она получила от предыдущего века, и то, что она передаст следующему. К концу XIX века сложилось довольно устойчивое представление о мире. В его основе лежала классическая механика, законы Ньютона, которые казались непоколебимыми. На них наслаивались законы физики. Они были несводимы к механике. В термодинамике не обращали внимания на поведение отдельной молекулы, а интересовались лишь средними скоростями молекул, т. е. температурами. Было известно, что тепло переходит от тел с более высокой температурой к телам с менее высокой температурой и, таким образом, температура выравнивается. Поэтому в теории тепла существовало понятие необратимого процесса: с течением времени в изолированной системе необратимо возрастает равномерность распределения тепла, то, что называется энтропией. Этим теория тепла явным образом отличается от механики, где все процессы могут идти и в обратном направлении. Отличаясь от механики, термодинамика, изучающая поведение больших множеств молекул, не могла в своей физической расшифровке полностью оторваться от кинетической теории, рассматривающей движение и соударение отдельных молекул, при котором, согласно общему убеждению, они целиком подчиняются законам механики, законам Ньютона. В электродинамике центральным понятием было понятие электромагнитного поля. Магнитное поле вызывается изменением электрического поля, электрическое – изменением магнитного поля. Поэтому, когда где-нибудь возникает переменное электрическое поле, оно индуцирует магнитное, которое в свою очередь оказывается переменным, индуцируя электрическое поле, и тем самым начинают распространяться электромагнитные колебания. К концу XIX века уже было известно, что частям видимого спектра соответствуют электромагнитные волны различной частоты, причем электромагнитные волны с большей частотой, чем те, которые дают фиолетовый свет, – это невидимое ультрафиолетовое излучение, а за волнами меньшей частоты, дающими видимый красный свет, простирается область электромагнитных волн еще меньшей частоты – невидимое тепловое, инфракрасное излучение. В самом конце века стали известны волны с еще большими частотами, чем в ультрафиолетовой части спектра, – рентгеновские лучи и гамма-излучение радия. За инфракрасными лучами были открыты волны во много раз меньшей частоты и соответственно с большей длиной волны – радиоволны, нашедшие применение в последние годы прошлого столетия. Электродинамические и оптические процессы ученые стремились объяснить по аналогии с механическими процессами. Основой этой тенденции была гипотеза эфира. Волны в эфире – это свет и все другие электромагнитные волны. Таким образом, понятие электромагнитного поля как будто не выходило за рамки механического представления о телах, которые передвигаются в пространстве, притягивая и отталкивая друг друга, не выходило за рамки простой, непротиворечивой, традиционной картины мира. Гипотеза эфира была как бы выражением «викторианской» тенденции в науке. Имя долго царствовавшей английской королевы Виктории стало в XIX веке символом традиционности и устойчивости. В науке было немало «викторианских» понятий, исключавших «беспокойство». С их помощью приходили к выводу, что она развивается путем непротиворечивой логической и экспериментальной конкретизации некоторых абсолютно устойчивых исходных аксиом. По это не всегда удавалось. В частности, эфиру приходилось приписывать весьма противоречивые свойства. С ним было много хлопот. М. Планк говорил, что эфир – это «дитя классической физики, зачатое во скорби». Очень тяжелым испытанием теории эфира была невозможность зарегистрировать движение тел относительно эфира. Если тела при своем движении увлекают эфир, то свет должен распространяться в движущейся системе с одинаковой скоростью туда и обратно (как пловец в бассейне на движущемся корабле будет пересекать этот бассейн в длину с одной и той же скоростью, проплывая это расстояние за одно и то же время и вперед – по движению корабля, и назад – от носа корабля к корме). Но в данном случае свет будет распространяться в этой системе с иной скоростью, чем его скорость в недвижущейся системе, т. е. в неподвижном эфире, и различие можно будет заметить. Если же движущиеся тела не увлекают эфир, то свет будет распространяться с различной скоростью вперед и назад в движущейся в эфире системе (как пловец будет с различной скоростью плыть вперед и назад в движущемся решетчатом бассейне, сквозь который свободно проходит не увлекаемая бассейном вода). Однако многочисленные эксперименты не продемонстрировали разницы скорости света ни по отношению к данной системе, ни по отношению к внешнему пространству. Таким образом, оба предположения оказались экспериментально не подтвержденными. Нельзя говорить, что тела при своем движении увлекают эфир, и нельзя говорить, что тела движутся в эфире, не увлекая его. Мы вернемся к этой коллизии немного позже, при характеристике теории относительности. Пока же отметим, что в конце XIX века эта ситуация внушала смутные опасения, но не давала повода для решительного отказа от эфира, не укладывавшегося в норму поведения, свойственную обычным телам. В целом наука XIX века склонялась к мысли о законченной картине мира, к представлению о том, что эта картина мира завершена в ее фундаментальных основах. Английский физик Дж. Дж. Томсон утверждал, что науке осталось лишь уточнять детали, поскольку в основном человек уже знает, как устроен мир. Конечно, такой крайний взгляд не был общим. Многие понимали, что перед наукой бесконечный путь преобразования фундаментальных идей. Но и сам Томсон, говоря о безоблачном небе науки, указывал на два облака: затруднения теории теплового излучения и отсутствие изменения скорости света в движущихся телах. Из этих облаков и грянул гром. А пока он не грянул, наука XIX века могла к окончанию столетия предъявить весьма внушительную схему мироздания. В основе этой схемы лежит идея сохранения основных законов бытия при переходе от одного звена иерархии вещества к другим, от атома к молекуле, от молекулы к макроскопическим телам, в частности к живому организму, затем к планетам, к солнечной системе, к звездам, к галактике. В начале этой иерархии находится атом. Атомы считались твердыми шариками, обладающими различной массой и различными физическими и химическими свойствами. Было известно несколько десятков различных типов атомов, различных элементов, входящих в периодическую таблицу. На исходе столетия стали известны электроны – минимальные заряды электричества. Возникло представление о субатомах – частицах меньших, чем атом. Такими частицами служили электроны. Это, однако, не могло нарушить спокойствия. Принципиальная возможность дальнейшего перехода к телам «меньше атома» и «больше галактики» всегда допускалась. Еще в начале нашего столетия по поводу электронов повторяли старые концепции бесконечной иерархии, которая тянется в обе стороны, причем структура все больших включающих и все меньших включенных систем одна и та же. Второе звено иерархии – молекула. В течение XIX века химия узнала о структуре громадного количества сложных веществ и определила состав их молекул. О природе сил, связывающих атомы в молекулы, знали так же мало, как о природе различий между атомами. Но об этом не слишком беспокоились. Наука могла идти вперед, не углубляясь в эти вопросы. То же можно сказать и о больших, включающих системах. Что касается живых организмов, то наука всесторонне изучила макроскопические законы естественного отбора, но остановилась перед проблемой наследственности и изменчивости организмов. Благодаря Г. Менделю стали известны некоторые законы наследственности, но природа их не была раскрыта. Теория Дарвина представлялась мощной демонстрацией универсальности классической науки. Она показала, что материя, состоящая из дискретных частей, обладающих свойствами притяжения и отталкивания и подчиняющихся в своем поведении законам классической механики, может эволюционировать и дойти до высокоорганизованных структур, до той целесообразности, которая всегда поражала людей при взгляде на органический мир. Дальше простирались еще более высокие звенья иерархии – солнечная система, само Солнце, еще дальше – звезды, а еще дальше – внегалактические туманности, иные галактики. Этот мир казался царством Ньютона. Однако и здесь были некоторые недоразумения. Вселенная представлялась бесконечной, и в этом случае небесным телам угрожали бесконечно большие силы тяготения, действующие в бесконечной по протяженности, заполненной тяжелыми телами Вселенной. Свет бесконечных звезд должен был превратить небо в сплошную сверкающую пелену. Но идея конечности доступной исследованию Вселенной не возникала. В целом XX век застал очень стройное и, казалось, достоверное в своей основе здание науки предыдущего столетия. В XX веке это здание не было разбито. Оно только зашаталось, и научная революция нашла для него новый фундамент, на котором старые знания получили ограниченное место. Это следует подчеркнуть. Научная революция не была очищением площадки для нового строительства. В науке не бывает катаклизмов, которые Ж. Кювье видел в прошлом Земли. История науки – непрерывный процесс. Н. Бор в начале нашего столетия, создавая модель атома, выдвинул принцип соответствия: при некоторых предельных условиях соотношения квантовой механики переходят в соотношения классической механики. Теория относительности Эйнштейна в случае медленных движений и процессов, при которых поглощаются или выделяются не слишком большие энергии, приходит к соотношениям механики Ньютона. Наука XX века подошла к классическому наследству как к совокупности теорий, уже не являющихся абсолютно справедливыми, абсолютно точными и абсолютно общими. Они становятся относительными и ограниченными, но получают более солидное обоснование. Что застает в науке XXI век? Об этом трудно сказать – развитие науки приобрело такую стремительность, что за оставшиеся два десятилетия может произойти много неожиданного. Но кое-что можно сказать с большой достоверностью. Как уже говорилось, XX век застал науку в виде стройного здания, претендующего на длительное сохранение без дальнейших перестроек. XXI век застанет науку далеко не в столь законченном и стройном виде. Здесь мы подходим, быть может, к самой важной особенности науки нашего века. В начале столетия наука нашла для своего здания не только новые свободные площадки и не только методы перестройки старых сооружений, но и более глубокий и прочный фундамент. Но оказалось, что под этим новым фундаментом скрывается еще один. И по-видимому, отныне нельзя было строить только вверх, воздвигая все новые этажи. Наука должна была все более опускаться вниз, ко все более глубоким фундаментальным основаниям. И вот эти, очевидно, бесконечные поиски все более глубокого и прочного фундамента и встретит XXI век. В самом деле, в течение XX века наука раздвинула мироздание вширь. Новая астрономическая революция позволила узнать много совершенно неожиданного о галактиках, находящихся от нас на расстояниях в миллиарды световых лет. Но дело не в этих масштабах. Мы знаем, что структура и эволюция Вселенной не могут быть познаны без дальнейшего коренного фундаментального преобразования основных физических принципов, основных принципов математики, без преобразования самой логики. Они не могут быть познаны и без нового представления об элементарных частицах. И здесь пафос современной науки не в том, что мы изучаем процессы в областях порядка 10^-15 см и 10^-25 сек., а в том, что здесь кончается путь, которым наука шла до сих пор, когда природу тела объясняли ссылкой на его внутреннюю структуру, на расположение и движение меньших частиц, входящих в его состав. Мы теперь знаем о возможности существования малой частицы, состоящей из более крупных. Это совершенно парадоксальное для классической науки утверждение представляется весьма вероятным. Крупные частицы могут так сильно взаимодействовать одна с другой, что их совокупная масса уменьшится, и в результате перед нами окажется частица с очень малой массой, близкой к нулю. Появляется представление о частице, составленной из очень больших масс. Трудно сказать, к чему приведет развитие подобных идей. Но они иллюстрируют однозначный и достоверный прогноз: XXI век застанет в науке начавшийся процесс непрерывных поисков новых фундаментальных принципов. В этом великий вклад науки нашего века в историю цивилизации. Теперь уже покончено с представлением о неподвижном фундаменте науки, на котором меняется лишь надстройка. В современнои науке ремонт и расширение надстроек неотделимы от возведения нового фундамента. Теория относительности, квантовая механика и начало атомного века В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению с выводами из теории относительности. Наблюдая развитие релятивистских и квантовых идей во второй половине столетия, можно убедиться в неправильности самого противопоставления итогов развития двух важнейших направлений современной физической мысли. Их философские итоги – одни и те же, причем не в смысле совпадения, а в ином, более глубоком смысле. Уже отмечалось, что философское обобщение достижений неклассической науки совпадает по своему направлению с наиболее характерной тенденцией второй половины XX века – превращением релятивистских и квантовых идей в нечто единое, в единую теорию мегамира и микромира. Другими словами, объектом философского обобщения – и чем дальше, тем больше – становится неклассическая наука как нечто целое. Поэтому для философии важен анализ теории относительности как концепции, характеризующей не только свой непосредственный объект – движение, сопоставимое по скорости со скоростью света, – но в определенной степени и развитие науки в целом. Попробуем проследить те идейно-методологические и экспериментальные резонансы теории относительности, которые преобразуют науку XX века. Прежде всего отметим, что эта теория сообщила всей пауке XX века более высокий динамизм. Она явилась первой универсальной физической концепцией, которая с самого начала устами своего творца объявила о своем неокончательном характере. Она посягнула на такие фундаментальные принципы физики, которые не могли быть поколеблены без принципиального отказа от всяческих догматических абсолютов, в частности от представления об абсолютной законченности самой теории относительности. Далее, теория относительности дала толчок пространственно-временному представлению, общему для всей неклассической науки. Такое представление в своем развитии связано с атомистической природой пространственно-временных соотношений и с распространением и модификацией их на иные области помимо макроскопического движения со скоростями, сопоставимыми со скоростью света. Прежде чем перейти к такой модификации пространственно-временного представления, несколько слов о нем как о центральной идее теории относительности. В 1908 году в работах Г. Минковского теория относительности была изложена в форме псевдоевклидовых геометрических соотношений четырехмерного пространственно-временного мира. В такой форме специальная теория относительности получила дополнительные возможности развития, облегчавшие систематическое построение релятивистской механики и электродинамики и последующий переход к более общей теории, включающей и гравитационное поле. Г. Минковский ввел понятия четырехмерной пространственно-временной «мировой точки», «мировой линии», «мира» и показал, что соотношения теории относительности могут быть представлены в виде геометрических соотношений, аналогичных евклидовым, если помимо пространственных координат (х, у, z) ввести четвертую координату – время, измеренное особыми единицами. При этом получается четырехмерная псевдоевклидова геометрия, отличающаяся от обычной евклидовой числом измерений и тем, что четвертая координата не является пространственной. При всем значении этих понятий они не изменили физического смысла теории относительности. Физическая идея четырехмерной геометрии – представление о связи пространства и времени – содержалась, по существу, уже в первой статье А. Эйнштейна о теории относительности. Речь идет не о тривиальной констатации того, что реальный мир существует в пространстве и во времени. В теории относительности содержалось другое утверждение. Если нет мирового эфира как универсального тела отсчета, значит, теряет смысл понятие абсолютной одновременности. Исчезнув из картины мира, эфир и отнесенное к эфиру движение унесли вместе с понятием абсолютной одновременности и представление о едином, охватывающем все пространство потоке времени, и представление об абсолютном пространстве. В 1949 году Эйнштейн писал: «Весьма распространенной ошибкой является мнение, будто специальная теория относительности как бы открыла, или же вновь ввела, четырехмерность физического многообразия (континуума). Конечно, это не так. Четырехмерное многообразие пространства и времени лежит в основе также и классической механики. Только в четырехмерном континууме классической физики „сечения“, соответствующие постоянному значению времени, обладают абсолютной (т. е. не зависящей от выбора системы отсчета) реальностью. Тем самым четырехмерный континуум естественно распадается на трехмерный и на одномерный (время), так что четырехмерное рассмотрение не навязывается как необходимое. Специальная же теория относительности, наоборот, создает формальную зависимость между тем, как должны входить в законы природы пространственные координаты, с одной стороны, и временная координата, с другой»[7]. Четырехмерный, вернее, (3+1)-мерный континуум теории относительности открывает дорогу представлению о мире во всей его сложности как о многомерном пространстве с дополнительным измерением, дающим возможность описывать его растущую размерность. Изменение числа измерений выводит пространственно-временное представление за пределы теории относительности. Мы можем говорить о единстве мегамира и микромира как о многомерном (n-мерном) пространстве, которое становится все более сложным, причем эта растущая сложность изображается (n+1)-м измерением, так что пространственно-временное представление включает (n+1)-мерный континуум. Теория относительности изменила представление о мегамире, о Вселенной. Сейчас Вселенная рассматривается как нечто целое, обладающее массой, радиусом и, более того, судьбой, прошлым и будущим. Правда, релятивистская космология – это такая ветвь теории относительности, на которой пока больше почек и цветов, чем листьев и плодов. Но она оказывает очень большое воздействие на все отрасли науки, на стиль научного мышления в целом, на философские обобщения. Как это ни парадоксально звучит, теория относительности и релятивистская космология способствуют переходу от собственно геометрических схем к физическим представлениям, основанным на экспериментальной проверке, включающим то, что А. Эйнштейн называл внешним оправданием. Теория относительности сообщает геометрическим соотношениям физический смысл. Она приводит к возможности локального, экспериментального решения проблемы геометрии мира. Позитивное решение данной проблемы всегда было функцией развития науки: локальное воздействие на мир, компоновка объективных сил природы с помощью эксперимента и в производстве – основа и философских выводов. Экспериментальное решение вопросов о бесконечности или конечности пространства, об евклидовых и неевклидовых его характеристиках имеет непосредственное отношение к вопросам об априорности или неаприорности понятия пространства, о происхождении геометрических понятий, о роли эмпирии и теоретических обобщений в познании. Мы уже приводили замечание В. Нернста о том, что теория относительности Эйнштейна не столько физическая, сколько философская теория. Действительно, можно говорить о большой роли гносеологических критериев в теории относительности. Физика XX столетия гораздо теснее, чем в предшествующий период, связана с гносеологическими проблемами, и это стало особенно заметно в середине столетия. В 1944 году Эйнштейн писал: «В настоящее время физик вынужден заниматься философскими проблемами в гораздо большей степени, чем это приходилось делать физикам предыдущих поколений. К этому физиков вынуждают трудности их собственной науки»[8]. Но и в начале столетия это занятие стало для физики более существенным, чем раньше. Подобно теории относительности, квантовая механика тоже служит исходным пунктом философских выводов, если ее рассматривать в движении и в особенности если иметь в виду принципиальное значение того, что произошло в науке во второй половине XX века. Для выяснения воздействия квантовой механики на философию весьма существенна эволюция от специфически микроскопического аспекта квантовой механики в первой половине столетия к включению квантовых понятий и представлении в теорию макропроцессов и даже в теорию мегамира. Сейчас приходится учитывать квантовую структуру полей при рассмотрении эволюции космоса, ее необратимости, сущности времени и геометрической структуры мирового пространства. Собственно гносеологические вопросы, волновавшие умы после появления квантовой механики, сейчас сочетаются с онтологическими философскими проблемами. Для современного состояния квантовой механики очень важно возникновение ее релятивистской модификации, т. е. появление релятивистской квантовой теории поля и квантовой электродинамики, открытие позитрона и превращений фотонов в электронно-позитронные пары и этих пар в фотоны, иначе говоря, серия открытий, сделанных в 30-е годы. Одновременно было создано современное учение об атомном ядре на основе открытия нейтрона – нейтронно-протонная модель ядра. В 40-е годы произошло включение в картину микромира мезонов, что открыло дорогу новому этапу в развитии теории микромира. Однако наиболее важные для философского обобщения выводов квантовой механики события произошли во второй половине 40-х и в начале 50-х годов: применение очень мощных ускорителей; сочетание наблюдений над частицами, получавшими в этих ускорителях высокие энергии, с наблюдениями над известными уже в первой четверти века космическими лучами; невероятно быстрый поток вновь открытых элементарных частиц и столь же быстрый рост сомнений и противоречий, связанных с самим понятием элементарности. В те же годы в картину мира вошло новое представление о вакууме и о взаимодействии вакуума с частицами. Изменились отправные пункты философского обобщения физики микромира, появились требующие нового философского осмысления понятия трансмутации частиц, более глубокой, таящейся в областях меньших, чем атомное ядро, формы причинности, виртуальных частиц и т. д. Но, быть может, еще важнее было то, что физика микромира вышла в мегамир. Первоначально, в особенности в 20-е годы, философское обобщение выводов квантовой механики ставило акцент на специфике микромира, на существовании таких форм причинности, которые свойственны именно микромиру. Констатация подобной специфичности сохраняется, но акцент теперь переходит на связь между тем, что можно назвать субъядерной причинностью, господствующей внутри областей порядка радиуса атомного ядра, и надгалактической причинностью, определяющей эволюцию Метагалактики. При всей значительности научных теорий, разработанных во второй половине столетия, они кажутся менее глубокими и радикальными поворотами фарватера науки, чем теория относительности и квантовая механика. Более того, в XIX веке наука за три четверти столетия изменилась радикальней, чем в XX веке. Достаточно сравнить идеи дофарадеевой и послемаксвелловой физики. Между ними существует гораздо большая дистанция, чем между статьей Эйнштейна о теории относительности, появившейся в 1905 году, и современными статьями. И тем не менее впечатление замедления и обмеления научного прогресса – иллюзия. Меняется лишь показатель прогресса. В XVII-XIX веках таким показателем был отказ от старых концепций: от концепций статической гармонии концентрических сфер, окружающих центр мироздания – Землю, специфических флюидов и т. п. Сейчас этот показатель выражается в конкретизации, обобщении и дифференциации прежних теорий, в более глубоком, точном, обоснованном определении их применимости. С дальнейшим развитием науки растут логические связи новых теорий со старыми и доказательства – логические и экспериментальные – истинности каждой новой теории, т. е. сохраняется, несмотря на последующую модификацию, конкретизацию, ограничение, их позитивное содержание. Это значит, что все меньшее число прежних концепций может быть полностью отброшено, все в большем числе эти концепции входят в сумму относительных истин, бесконечно приближающуюся к абсолютной истине. Вернемся к уже мелькнувшему примеру – отказу от невесомых флюидов в XIX веке и сравним его с переходом от специальной теории относительности к общей. Здесь ясно видно, что при все меньшей роли простого отказа от старых теорий радикальность и глубина перемен в науке не уменьшаются, а растут. Есть еще одна причина растущей достоверности сменяющих в наше время одна другую научных теорий. Они характеризуются все более непосредственным производственно-техническим применением, т. е. отвечают тому критерию практики, который является наиболее непререкаемым доказательством существования и познаваемости объекта науки. В 40-50е годы нашего века началось широкое, ведущее к реконструкции производственной техники применение атомной и ядерной физики. Для развития философии существенны не только научные достижения как таковые, но и те широкие научно-технические сдвиги, которые соединяют физику атомного ядра с производством. Причем не только уже реализованные сдвиги, но и прогнозы воздействия атомной и ядерной физики на производство, охватывающие конец XX века и начало следующего столетия. Научно-технические сдвиги сейчас, более чем когда-либо ранее, связаны с философской мыслью, с теоретическими обобщениями. Дело в том, что фундаментальная наука воздействует ныне на производство непосредственно и становится в некотором смысле прикладной, не переставая быть фундаментальной. Так, трудно провести границу между атомной энергетикой и атомной физикой: эволюция реакторов является непосредственным результатом эволюции представлений о ядерных процессах. По-видимому, в будущем, когда непосредственной основой практического применения достижений физической науки станет теория элементарных частиц, связь фундаментальных идей с практическим их применением, связь вопроса о том, как повысить эффективность машин и приборов, с вопросами: «Что такое пространство?», «Что такое время?», «Что такое поле?» и т. п. – станет еще более тесной. Но и сейчас она достаточно явная. В наше время научные прогнозы приобрели комплексный характер. Таков был уже план ГОЭЛРО, во многом связанный с реализацией того, что обещали классические электродинамика, механика и электронная теория. Классическая электродинамика обеспечивает возможность производить электрическую энергию в одном месте, повышать напряжение, передавать энергию на большое расстояние и здесь превращать ее в механическую работу в электродвигателях. Классическая механика создала методы эффективного и быстрого расчета, позволяющие создавать разветвленную систему разнообразных машин, использующих преимущества электрического привода. Естественным завершением происшедших на этой основе технических и экономических сдвигов являлось прежде всего объединение энергетики, создание единой сети высоковольтных передач, соединяющих энергетические центры с центрами потребления. Завершение строительства такой единой сети, как предполагалось, совпадет с полным переходом к электрическому приводу и соответственно с высокой механизацией производства. С другой стороны, классическая электронная теория позволяла расширить применение электричества в технологии, развивать электроемкие отрасли производства, широко использовать новые материалы. Указанные сдвиги образуют новое производство, новое по исходным материалам, по характеру труда, по темпам роста производительности труда. Реализация такой программы была рассчитана на 20 лет, и действительно, за это время основные возможности, раскрытые классической наукой и учтенные в плане ГОЭЛРО, оказались реализованными. Сейчас аналогичная ситуация сложилась в отношении современной науки. Речь идет о том, что обещает производству и культуре тот комплекс представлений о пространстве, времени, движении, энергии и веществе, который появился в прямой или косвенной связи с теорией относительности и квантовой механикой. Исходный процесс производственного применения достижений современной науки – новая энергетика. Применение достижений классической науки было связано с использованием тех источников энергии, которые в конечном счете обязаны своим возникновением и воспроизводством солнечной радиации. Лучи Солнца поднимают вверх молекулы воды – отсюда энергия речных потоков; они же создают температурные перепады в атмосфере, различные уровни давления – отсюда энергия ветра; они же заставляют хлорофилл поглощать свет и накоплять энергию топлива. Современная наука приводит к применению и расходованию тех запасов энергии, которые накоплены при возникновении и распаде атомов, при возникновении и гибели звездных миров. Открытие атомной энергии привело к тому, что астрофизика становится прикладной наукой. Уже недалеко время, когда станет возможным воспроизведение в лабораториях тех процессов, которые поддерживают и компенсируют излучение звезд. Многие живущие сейчас люди, по всей вероятности, станут свидетелями превращения подобных термоядерных процессов в основу энергетики. Такова энергетическая сторона того, что называют атомным веком. Его завершением будут: превращение атомных станций в преобладающий источник электроснабжения, реконструкция технологии на основе квантовой электроники, автоматизация на основе электронно-вычислительных машин, освобождение производства от угрозы истощения энергетических ресурсов. Конечно, электронная автоматика и новая структура энергетических ресурсов не являются непосредственными и исключительными результатами атомной энергетики, и поэтому указанные составляющие научно-технической революции можно было бы назвать резонансами атомной энергетики. Из таких резонансов особое значение имеет квантовая электроника. Термин «резонанс» является для нее вполне законным, если иметь в виду не столько атомные реакторы, сколько общий подъем теоретических и экспериментальных исследований в современной физике. Атомная энергетика была и результатом такого подъема, и новым импульсом для его нарастания и связанного с этим преобразования научного мышления и эксперимента. Но есть и другая, собственно научная связь. Применение выводов науки – это целесообразная, основанная на обнаруженных Причинных связях компоновка объективных процессов и тел. Атомная энергетика – это целесообразное регулирование процессов деления тяжелых ядер или (в случае термоядерных процессов) синтеза легких ядер. В квантовой электронике индуцированное излучение в оптическом диапазоне (лазеры) и в радиодиапазоне (мазеры) представляет собой целесообразное регулирование континуальных процессов – излучений. Здесь имеется существенное отличие от регулирования макроскопических континуальных процессов в гидродинамике, в электрических сетях, в радиосигналах. В перечисленных случаях регулирование происходит при игнорировании их атомистической природы, так же как и регулирование движения дискретных тел (в том числе в классических электронных процессах) возможно при игнорировании их континуальной природы. А в квантовой электронике, особенно при анализе индуцированного излучения в оптическом диапазоне, континуальная картина становится невозможной без дискретной и наоборот. Здесь мы встречаемся с существенно неклассическими процессами. Казалось бы, подобная чисто физическая, чисто теоретическая и весьма общая характеристика квантовой электроники не имеет прямого отношения к путям ее совершенствования и применения. Но это только на первый взгляд. В действительности же связь тут прямая, причем очень характерная для современного научного, технического и экономического прогресса. Научно-техническая революция во второй половине XX века состоит в том, что зоны сознательного, целесообразного вмешательства человека в процессы природы возникают там, где приходится учитывать релятивистские и квантовые аспекты бытия. Отсюда, повторяя уже известную нам формулу Лапласа, – необходимость для разума углубляться в себя самого при каждом продвижении вперед, необходимость развития и преобразования самых общих представлений для решения чисто технических задач. Но отсюда же и беспрецедентная скорость и, более того, столь частое, иногда непрерывное ускорение технического и экономического прогресса. В квантовой электронике становится особенно явной связь между неклассическим характером идеальных физических схем и их эволюцией, с одной стороны, и темпом дальнейшего прогресса и применения лазеров – с другой. Такую же связь неклассического и фундаментального характера теории с дифференцированностью и широтой ее технического воплощения можно увидеть в кибернетике – этом важнейшем резонансе развития атомной физики, важнейшей компоненте атомного века. Поколения электронно-вычислительных машин различаются не только конструктивно, но и по теоретическим основам создаваемых конструкций; это – принципиально различные машины. И именно подобная эволюция позволяет переходить к универсальному применению электронно-вычислительных машин для автоматизации все более сложных процессов. Атомная и ядерная физика создают условия для беспрецедентного расширения экспериментальных открытий, причем не только для количественного их расширения, но и для появления принципиально новых экспериментальных, наблюдательных средств. Достаточно напомнить о роли кибернетики для внеземной астрономии. Исследования в области атомной и ядерной физики неизбежно приводят и к проблемам, которые могут быть разрешены только в теории элементарных частиц. Таким образом, атомный век включает подготовку нового периода. Чем обобщеннее и шире задачи, поставленные им перед специальными науками, чем они ближе к философии, тем явственней приближение этого нового периода. Он будет так же относиться к теории элементарных частиц, как атомный век – к атомной и квантовой физике, как XIX век – к классической термодинамике и классической электродинамике. Он будет связан с разработкой квантово-релятивистской теории элементарных частиц и мегамира, т. е. физики как единого учения о бытии, где бытие фигурирует и в своей пространственно-временной целостности, и в своей гетерогенности. |
|
||
Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке |
||||
|